
Android Custom Permissions Demystified: A
Comprehensive Security Evaluation
Rui Li , Wenrui Diao , Zhou Li , Senior Member, IEEE, Shishuai Yang,

Shuang Li, and Shanqing Guo

Abstract—Permission is the fundamental security mechanism for protecting user data and privacy on Android. Given its importance,

security researchers have studied the design and usage of permissions from various aspects. However, most of the previous research

focused on the security issues of system permissions. Overlooked by many researchers, an app can use custom permissions to share

its resources and capabilities with other apps. However, the security implications of using custom permissions have not been fully

understood. In this paper, we systematically evaluate the design and implementation of Android custom permissions. Notably, we built

an automatic fuzzing tool, called CuPerFuzzer+, to detect custom permission related vulnerabilities existing in the Android OS.

CuPerFuzzer+ treats the operations of the permission mechanism as a black-box and executes massive targeted test cases to trigger

privilege escalation. In the experiments, CuPerFuzzer+ discovered 5,932 effective cases with 47 critical paths successfully. Through

investigating these vulnerable cases and analyzing the source code of Android OS, we further identified a series of severe design

shortcomings lying in the Android permission framework, including dangling custom permission, inconsistent permission-group

mapping, custom permission elevating, inconsistent permission definition, dormant permission group, and inconsistent permission

type. Exploiting these shortcomings, a malicious app can access unauthorized platform resources. On top of these observations, we

propose three general design guidelines to secure custom permissions. Our findings have been acknowledged by the Android security

team and assigned CVE-2020-0418, CVE-2021-0306, CVE-2021-0307, and CVE-2021-0317.

Index Terms—Android security, custom permission, automatic analysis

Ç

1 INTRODUCTION

AS the most popular mobile platform, Android provides
rich APIs and features to support third-party apps devel-

opments. For security concerns, Android also designs a series
of mechanisms to prevent malicious behaviors. Among these
mechanisms, permission is the fundamental one of Android
OS: any app must request specific permissions to access the
corresponding sensitive user data and system resources.

On account of the importance of the permission mecha-
nism, its design and usage have been studied by lots of pre-
vious research from many aspects, such as permission
models [1], [2], [3], permission usage [4], [5], [6], and mal-
ware detection [7], [8], [9]. Along with the continuous
upgrade of Android OS, the underlying architecture of the

permission mechanism becomes more and more compli-
cated. Its current design and implementation are seemingly
complete enough. However, overlooked by most of the pre-
vious research, Android allows apps to define their own
permissions, say custom permissions [10], and use them to
regulate the sharing of their resources and capabilities with
other apps. Since custom permission is not related to system
capabilities by design, its range of action is supposed to be
confined by the app defining it. Therefore, in theory, dan-
gerous operations cannot be executed through custom per-
missions, which may be the reason that custom permissions
are overlooked by the security community.

To the best of our knowledge, the study of Tuncay et al.
[11] is the only work focusing on the security of custom per-
missions. Theymanually discovered two privilege escalation
attacks that exploit the permission upgrade and naming con-
vention flaws, respectively. Currently, according to the
Android Security Bulletins, their discovered vulnerabilities
have been fixed. Unfortunately, we find that, though both
attacks have been blocked, custom permission based attacks
can still be achievedwith alternative execution paths bypass-
ing the fix (more details are given in Section 3). This prelimi-
nary investigation motivates us to explore whether the
design of Android custom permissions still has other flaws
and how to find these flaws automatically.

Our Work. In this work, we systematically evaluate the
design and implementation of Android custom permis-
sions. Notably, we explored the design philosophy of cus-
tom permissions and measured their usage status based on
a large-scale APK dataset. We also built an automatic light-
weight fuzzing tool called CuPerFuzzer+ to discover

� Rui Li, Wenrui Diao, Shishuai Yang, Shuang Li, and Shanqing Guo are
with the School of Cyber Science and Technology, Shandong University,
Qingdao, Shandong 266237, China, and also with the Key Laboratory of
Cryptologic Technology and Information Security,Ministry of Education, Shan-
dong University, Qingdao, Shandong 266237, China. E-mail: {leiry, shishuai,
lishuang1024}@mail.sdu.edu.cn, {diaowenrui, guoshanqing}@sdu.edu.cn.

� Zhou Li is with the University of California, Irvine, CA 92697 USA.
E-mail: zhou.li@uci.edu.

Manuscript received 5 July 2021; revised 3 October 2021; accepted 4 October
2021. Date of publication 14 October 2021; date of current version 14 Novem-
ber 2022.
This work was partially supported by the National Natural Science Foundation
of China under Grants 61902148 and 91546203, Major Scientific and Techno-
logical Innovation Projects of Shandong Province, China under Grants
2018CXGC0708 and 2019JZZY010132, and the Qilu Young Scholar Program
of ShandongUniversity.
(Corresponding author: Wenrui Diao.)
Recommended for acceptance by J. Sun.
Digital Object Identifier no. 10.1109/TSE.2021.3119980

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 11, NOVEMBER 2022 4465

0098-5589 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on September 12,2023 at 10:25:48 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0822-0919
https://orcid.org/0000-0002-0822-0919
https://orcid.org/0000-0002-0822-0919
https://orcid.org/0000-0002-0822-0919
https://orcid.org/0000-0002-0822-0919
https://orcid.org/0000-0003-0916-8806
https://orcid.org/0000-0003-0916-8806
https://orcid.org/0000-0003-0916-8806
https://orcid.org/0000-0003-0916-8806
https://orcid.org/0000-0003-0916-8806
https://orcid.org/0000-0002-9401-1012
https://orcid.org/0000-0002-9401-1012
https://orcid.org/0000-0002-9401-1012
https://orcid.org/0000-0002-9401-1012
https://orcid.org/0000-0002-9401-1012
https://orcid.org/0000-0003-3367-0951
https://orcid.org/0000-0003-3367-0951
https://orcid.org/0000-0003-3367-0951
https://orcid.org/0000-0003-3367-0951
https://orcid.org/0000-0003-3367-0951
mailto:leiry@mail.sdu.edu.cn
mailto:shishuai@mail.sdu.edu.cn
mailto:lishuang1024@mail.sdu.edu.cn
mailto:diaowenrui@sdu.edu.cn
mailto:guoshanqing@sdu.edu.cn
mailto:zhou.li@uci.edu

custom permission related privilege escalation vulnerabil-
ities. Different from the previous approaches of permission
system modeling [12], [13], CuPerFuzzer+ treats the oper-
ations of the Android permission mechanism as a black-box
and dynamically generates massive test cases for fuzzing.
In other words, it does not rely on prior knowledge of the
internal permission mechanism and avoids missing incon-
spicuous system components. After solving a series of tech-
nical challenges, CuPerFuzzer+ achieves fully automated
seed generation, test case construction, parallel execution,
and result verification. Running on four Google Pixel 2
phones equipped with Android 9/10, finally, CuPerFuz-
zer+ discovered 5,932 successful exploit cases after execut-
ing 119,418 fuzzing tests.

These effective cases were further converted to 47 critical
paths, say the necessary operations for triggering a privilege
escalation issue. Combined with the analysis of the source
code of Android OS, we identified six severe design short-
comings1 in the Android permission framework.

� DS#1: Dangling custom permission: causing granting
apps nonexistent custom permissions.

� DS#2: Inconsistent permission-group mapping: causing
obtaining incorrect permission-group members list.

� DS#3: Custom permission elevating: causing eleva-
ting custom permissions to dangerous system
permissions.

� DS#4: Inconsistent permission definition: causing break-
ing the integrity of custom permission definitions.

� DS#5: Dormant permission group: causing displaying
fake group information at runtime.

� DS#6: Inconsistent permission type: causing downgrad-
ing signature custom permissions to dangerous

custom permissions.
A malicious app can exploit these design shortcomings to

obtain dangerous system permissions without user consent or
get unauthorized access to the resource protected by the signa-
ture permission. Besides, we discovered a location permis-
sion-specific issue – the grouping of the location permission
is alterable. Therefore, the adversary can exploit a custom
permission to break the isolation between the foreground
and background location permissions. As showcases, we
present six concrete attacks to demonstrate their fatal conse-
quences. Attack demos are available at https://sites.google.
com/view/custom-permission.

Responsible Disclosure. We reported our findings to the
Android security team, and all discovered design shortcom-
ings have been confirmed with positive severity ratings [14],
as shown below:

� DS#1: High severity, assigned CVE-2021-0307.
� DS#2: High severity, assigned CVE-2020-0418.
� DS#3: High severity, assigned CVE-2021-0306.
� DS#4: High severity, assigned CVE-2021-0317.
� DS#5: Moderate severity with AndroidID-

176828496.
� DS#6: Low severitywith AndroidID-155649020.
� Location permission-specific issue: Moderate severity

with AndroidID-186531661.

To mitigate the current security risks, we propose some
immediate improvements and discuss general design
guidelines to secure custom permissions in Android.

Contributions. The main contributions of this paper are:

� Tool Design and Implementation. We designed and
implemented an automatic black-box fuzzing tool,
CuPerFuzzer+

2, to discover custom permission
related privilege escalation vulnerabilities inAndroid.

� Real-world Experiments. We deployed CuPerFuzzer

+ under real-world settings and conducted massive
fuzzing analysis. In the end, it discovered 5,932 priv-
ilege escalation cases with 47 critical paths.

� New Design Shortcomings. We identified six severe
design shortcomings lying in the Android per-
mission framework. Malicious apps can exploit these
flaws to get unauthorized access to platform
resources.

� Systematic Study. We explored the design philosophy
of custom permissions and measured their usage in
the wild. After digging into the essence of discov-
ered design flaws, we discussed the general design
guidelines to secure Android custom permissions.

This work is an extension of our conference version
appearing in the Proceedings of IEEE S&P 2021 [15]. In this
extension, we improved the automatic tool by adding an
extra permission-related operation, device reboot, to
enhance the execution path coverage and adjusting the
method of extracting critical paths to locate causes more
accurately and quickly. Therefore, we updated the tool
name from CuPerFuzzer to CuPerFuzzer+. In addition,
we conducted new experiments and discovered two new
design shortcomings and a new location permission-specific
issue lying in the Android permission framework. These
new findings also have been confirmed by the Android
security team. For the new shortcomings, we gave their
detailed analysis and the corresponding mitigation solu-
tions. To better explain the newly discovered shortcomings,
we complemented the necessary background about the run-
time permission granting. Based on the new insights, we
proposed a new general design guideline. Also, we updated
our APK dataset and conducted a more accurate usage pur-
pose analysis of the custom permissions, combining with
the NLP techniques.

Roadmap. The rest of this paper is organized as follows.
Section 2 provides the necessary background of Android
custom permissions. Section 3 gives a motivation case and
the threat model used in this paper. Section 4 introduces the
detailed design of CuPerFuzzer+, and Section 5 presents
the experiment results. The design flaws of custom per-
missions are analyzed in Section 6. In Section 7, we propose
mitigation solutions and general design guidelines. In
Section 8, we discuss some limitations of our work. Section 9
reviews related work, and Section 10 concludes this
paper. Additional materials are provided in the Appendix,
which can be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/TSE.2021.
3119980.

1. In the following sections, we useDS#1 � DS#6 for short.
2. The source code of CuPerFuzzer+ is available at https://github.

com/little-leiry/CuPerFuzzer.

4466 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on September 12,2023 at 10:25:48 UTC from IEEE Xplore. Restrictions apply.

https://sites.google.com/view/custom-permission
https://sites.google.com/view/custom-permission
http://doi.ieeecomputersociety.org/10.1109/TSE.2021.3119980
http://doi.ieeecomputersociety.org/10.1109/TSE.2021.3119980
https://github.com/little-leiry/CuPerFuzzer
https://github.com/little-leiry/CuPerFuzzer

2 ANDROID CUSTOM PERMISSIONS

In this section, we provide the necessary background of
Android custom permissions and further discuss their
usage in the wild based on a large-scale measurement.

2.1 Android Permission Mechanism

InAndroid, sensitiveAPIs and system resources are protected
by the permission mechanism. To access them, apps must
request the corresponding permissions in their manifest files
and ask users to authorize. In Android 10 (API level 29), the
permission control functionalities are mainly implemented in
PackageManager [16] and PermissionController [17].

Permissions are divided into three main protection levels:
normal, signature, and dangerous. The system grants
apps normal and signature permissions at the install
time, so these two kinds of permissions are also called install-
time permissions. The difference is that a normal permission
is granted to an app automatically, while a signature per-
mission can only be used by the app signed by the same cer-
tificate as the app defining it [18]. On the other hand, users
can choose to grant or deny dangerous permissions at run-
time, so dangerous permissions are also called runtime per-
missions. When the app requests a runtime permission, the
system shows a permission prompt to the user, as shown in
Fig. 1. The contextual information can help the user under-
stand why the app needs this permission and make a better
decision about granting or denying it [19].

All dangerous permissions belong to permission groups.
For example, both READ_SMS and RECEIVE_SMS belong to
the SMS group. Also, dangerous permissions are granted on
a group basis. If an app requests dangerous permissions
belonging to the same permission group, once the user grants
one, the others will be granted automatically without user
confirmation. Note that any permission can be assigned to a
permission group regardless of protection level [20].

From an internal view, to an app, the processes of grant-
ing and revoking a permission are essentially changing the
corresponding granting status parameter, mGranted (bool-
ean variable), maintained by PermissionController

(runtime permissions) and PermissionManagerService

(install-time permissions). mGranted is set as True to grant
a permission and False to revoke a permission. The grant-
ing status of permissions is also recorded in runtime-per-

missions.xml
3 (runtime permissions) and packages.

xml
4 (install-time permissions) for persistent storage.

2.2 Custom Permissions

In essence, system permissions (also called platform permis-
sions) are the permissions defined by system apps located in
system folders (/system/), such as framework-res.apk

(package name: android), to protect specific system resour-
ces. For instance, an app must have the CALL_PHONE permis-
sion to make a phone call. For third-party apps, they can
define their own permissions aswell, called custom permissions,
to share their resources and capabilitieswith other apps [10].

As shown in Listing 1, a custom permission com.test.

cp is defined in an app’s manifest file using the permis-

sion element. The app must specify the permission name
and protection level (default to normal if not specified). If
the name is the same as a system permission or an existing
custom permission, this custom permission definition will
be ignored by the system.

Listing 1. Define and Request a Custom Permission

< !�� Define a custom permission �� >
<permission
android:name=“com.test.cp”
android:protectionLevel=“normal”
android:description=“@string/per_des”
android:permissionGroup=“android.permission-group.

PHONE”= >
< !�� Request a custom permission �� >
<uses-permission android:name=“com.test.cp”/>
< !�� Description of the custom permission �� >
< string name=“per_des”> get the message push service

<=string>

App developers can use the android:description

attribute to explain the purpose of the custom permission.
For the dangerous (runtime) custom permission, the per-
mission description will be presented in the runtime permis-
sion dialog, as shown in Fig. 1a. App developers can also
assign a permission group to the custom permission option-
ally. The group can be a custom group defined by third-party
apps or a system group defined by system apps (e.g., the
PHONE group in Listing 2). If the dangerous (runtime) per-
mission belongs to a permission group, the systemwill show
the group’s functionality to the user, as Fig. 1b shows.

Listing 2. The Definition of the PHONE Group in the
Manifest File of the System App Android

< !�� Used for permissions that are associated with tele-
phony features �� >

<permission-group android:name=“android.permission-
group.PHONE”

android:icon=“@drawable/perm_group_phone_calls”
android:label=“@string/permgrouplab_phone”
android:description=“@string/permgroupdesc_phone”
android:request=“@string/permgrouprequest_phone”
android:priority=“500” = >
< !�� Description of the PHONE group �� >
< string name=“permgroupdesc_phone”>make and man-

age phone calls< =string>

To use the custom permission, the app needs to request it
through the uses-permission element in its manifest file.

Fig. 1. Grant or deny a runtime custom permission to the app test in
Android 10. (a) The custom permission is not in any group. (b) The cus-
tom permission is in the PHONE group.

3. Location: /data/system/users/0/runtime-permissions.
xml

4. Location: /data/system/packages.xml

LI ETAL.: ANDROID CUSTOM PERMISSIONS DEMYSTIFIED: A COMPREHENSIVE SECURITY EVALUATION 4467

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on September 12,2023 at 10:25:48 UTC from IEEE Xplore. Restrictions apply.

Design Philosophy. In most usage scenarios, Android
does not intend to distinguish between system and custom
permissions. The general permission management policies
apply to both types of permissions, including protection
levels, runtime permission control, and group manage-
ment. This design unifies and simplifies the control of
permissions.

The fundamental difference is that, system permissions
are defined by the system (system apps), and custom per-
missions are defined by third-party apps. Actually, if the
system needs to judge whether a permission is a system
one, it will check whether its source package is a system
app [21]. Also, system apps are pre-installed and cannot be
modified or removed by users. Accordingly, their defined
permissions are stable, including names, protection levels,
grouping, and protected system components. Therefore,
system permissions are treated as constant features of
Android OS. On the other hand, users can install, uninstall,
and update arbitrary third-party apps, making the usage of
custom permissions more flexible. That is, it brings the pos-
sibilities of adding, removing, and updating permission def-
initions, though these permission-related operations are not
only designed for custom permissions.

Since system permissions are used to protect essential
platform resources, Android indeed designs some mecha-
nisms to ensure custom permissions will not affect the scope
of systempermissions. For instance, systempermissions can-
not be occupied by third-party apps, say changing the per-
mission owner. This guarantee is achieved through three
conditions: (1) Android does not allow an app to define a
permission with the same name as an existing permission.
(2) If multiple apps define a permission with the same name,
the app installed first is the owner of this permission. (3) Sys-
tem apps are installed before any third-party apps and first
define a set of permissions to protect specific platform
resources. It can be seen that Android does not distinguish
the permission type in this course, reflecting the design phi-
losophy of custom permissions, to a certain extent.

2.3 Usage Status in the Wild

To understand the status quo of using custom permissions,
we conducted a large-scale measurement based on 178,493
APK files crawled from 16 popular app markets in February
20215, including APKPure, Anzhi, Baidu, Xiaomi, Huawei,
Lenovo, 9Apps, 2265, DownloadPCAPK, F-Droid, Gfan,

LapTopPCAPK, LePlay, Leyou, PC6, and Uptodown. Spe-
cifically, we focus on the following two research questions:

1) How many apps use custom permissions?
2) What are the purposes of using custom permissions?
To answer these questions, we developed a light-weight

tool based on Androguard [24] to obtain custom permission
related information in apps for further processing.

To Question-1, our results show that 66,639 apps (around
37.3%) declare a total of 142,588 custom permissions. We
can find that the use of custom permissions is not unusual.
On the aspect of protection levels, about 86% of these per-
missions are signature, as summarized in Table 1. The
reason for such a high percentage may be that a series of
apps only want to share some sensitive resources with the
apps developed by the same company (signed by the same
certificate). On the other hand, normal permissions account
for 13.61%, and dangerous permissions account for only
0.45%. The use of instant permissions is extremely rare
(< 0.01%), which are only used for instant apps [22].

Besides, 3,022 custom permissions (around 2.1% of the
total) are assigned to permission groups, see Table 2.
Among them, system permission groups are used more fre-
quently than custom permission groups. Using a system
group can simplify the permission UI shown to the user,
which is recommended by Google [10].

To Question-2, for each custom permission, we crawled
its name, label, description, and the information of the com-
ponents it protects for analysis. Based on the extracted data,
we designed an approach utilizing the natural language
processing (NLP) techniques to analyze the purposes of
using custom permissions [25], [26]. As illustrated in Fig. 2,
the main steps are as follows:

1) Data Pre-processing. First, we clean the collected data
to filter the invalid information that is not helpful for
the purpose analysis, such as package names, gen-
eral words (e.g., the ”permission” word in the permis-
sion name), prepositions, and punctuation.

2) Word Segmentation. Next, we segment the pre-proc-
essed data by word for the subsequent vectorization.
Note that our dataset contains Chinese and English.
English is composed of single words and does not
need word segmentation. For Chinese, we use

TABLE 1
Protection Levels of Custom Permissions

Protection Level Amount Percentage

normal 19,411 13.61%

dangerous 644 0.45%

signaturey 122,525 85.93%

instantz 8 0.01%

y: Includemixed levels:signature|privileged andsignatureOrSystem.
z: Only for instant apps [22].

TABLE 2
Permission Groups of Custom Permissions

Group Type Amount Percentage

System Group 1,757 58.14%

Custom Group 1,265 41.86%

Fig. 2. Analysis flow of custom permission usage purposes.

5. We developed a crawler based on Scrapy (a framework for
extracting the data from websites [23]) to traverse the pages of app mar-
ket websites to obtain the download links of APK files.

4468 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on September 12,2023 at 10:25:48 UTC from IEEE Xplore. Restrictions apply.

jieba [27], a Python Chinese word segmentation
module, to process.

3) Data Vectorization. Then, we vectorize the data based
on the word segmentation results utilizing the Bag-

of-Words model. In order to achieve a better clus-
tering effect, we convert the obtained vectors into a
TF-IDFmatrix [28].

4) Data Clustering. Finally, we use the K-Means algo-
rithm to cluster the data. This algorithm converges
quickly and is quite suitable for clustering large
amounts of data. The initial value of K (the number
of clusters) is determined by a rough classification6,
and we gradually adjust it to obtain the optimal clus-
tering results.

We manually analyzed each obtained custom permission
cluster’s usage purpose based on the top 3 words appearing
most frequently in it. The final classification results are plot-
ted in Fig. 4, containing the following 8 categories:

� C1: Use message push services. More than 80% of apps
in our dataset declare such kinds of permissions to
using the corresponding message push services,
such as C2D_MESSAGE offered by Google, PROCES-
S_PUSH_MSG offered by Huawei, MIPUSH_RE-

CEIVE offered by Xiaomi, and JPUSH_MESSAGE

offered by the JPush platform [29].
� C2: Use location and map services. For example, 590

apps in our dataset declare the BAIDU_LOCATION_

SERVICE permission to obtain the location service
provided by Baidu.

� C3: Use instant message services. For example, 2,366
apps in our dataset declare the RECEIVE_MSG

permission to obtain the instant message service
provided by the Ronglian cloud communication
platform [30].

� C4: Integrate third-party open-source frameworks. For
example, 981 apps in our dataset declare the and-

Permission.bridge permission and integrate
AndPermission, a third-party open-source frame-
work for permission management [31].

� C5: Restrict the access to apps’ shared data. For example,
the app Blue Mail (me.bluemail.mail) defines
the READ_MESSAGES

7 permission to control the
access to the mails it manages.

� C6: Restrict the access to apps’ download managers. For
example, only the apps with the ACCESS_DOWN-

LOAD_ MANAGER
8 permission can access the down-

load manager (and the corresponding downloaded
data) of the app APUS Browser (com.apusapps.
browser).

� C7: Control the communication between apps. For exam-
ple, only the apps with the INTERNAL_BROADCAST9

permission can send a broadcast to the broadcast
receivers of the app Cisco Webex Meetings (com.
cisco.webex.meetings).

� C8: Others. There are three cases in this category: (1)
The number of some similar custom permissions is
too tiny to be clustered. (2) Due to insufficient related
information, the usage purposes of some custom per-
mission clusters cannot be determined. (3) The decla-
rations of 6,552 custom permissions are invalid
because these custom permissions have the same
names as the system permissions.

3 MOTIVATION AND THREAT MODEL

In this section, we discuss the motivation case of our work
and give the threat model.

3.1 Motivation Case

The security of Android custom permissions was not thor-
oughly studied in previous research. The reason may be
that the corresponding security threats were regarded as
limited, irrelevant to sensitive system resources and user
data. As the only literature focusing on custom permissions,
the study of Tuncay et al. [11] found that custom permis-
sions were insufficiently isolated, and there is no enforcing
name convention for custom permissions in Android. They
also presented two privilege escalation attacks to access
unauthorized resources.

As shown in upper Fig. 3, one attack case is that the
adversary creates an app app-test that defines and
requests a normal custom permission cp, and the user
installs this app. Then, the protection level of cp is changed
to dangerous, and the user installs this updated app-

test again. Finally, app-test obtains dangerous cp

without user consent, that is, privilege escalation. This
attack can be further extended to obtain dangerous system
permissions.

Fig. 3. An alternative attack flow achieving privilege escalation.

6. Specifically, we first randomly select a permission name and keep
its keyword by filtering invalid information, such as the package name.
Then, we count the number of permission names containing this key-
word. If the number is larger than 1000, we classify these custom per-
missions into a category.

7. Full name: me.bluemail.mail.permission.READ_MESSAGES

8. Full name: com.apusapps.permission.ACCESS_DOWNLOAD_

MANAGER

9. Full name: com.cisco.webex.permission.INTERNAL_

BROADCAST

LI ETAL.: ANDROID CUSTOM PERMISSIONS DEMYSTIFIED: A COMPREHENSIVE SECURITY EVALUATION 4469

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on September 12,2023 at 10:25:48 UTC from IEEE Xplore. Restrictions apply.

Our Findings. According to the Android Security
Bulletins and the corresponding source code change
logs [32], the above attack has been fixed in Android 10.
Google’s fix prevents the permission protection level
changing operation – from normal or signature to
dangerous.

However, we find that, though this attack indeed has
been blocked by Google, another app execution path still
can achieve the same consequence, which bypasses the fix.
As illustrated in lower Fig. 3, the adversary creates two
apps, app-d and app-r. app-d defines a normal custom
permission cp, and app-r requests cp. Also, there are two
updated versions of app-d, say app-d-1 and app-d-2.
To be specific, app-d-1 removes the definition of cp, and
app-d-2 re-defines cp with changing the protection level
to dangerous. The user executes the following sequence:
install app-d, install app-r, install app-d-1, and install
app-d-2. Finally, app-r obtains cp and achieves the privi-
lege escalation.

Our further investigation shows this newly discovered
attack derives from a design shortcoming lying in the
Android permission framework, that is, DS#1 – dangling
custom permission (see Section 6.1).

Insight. This preliminary exploration motivates us to
think about how to check the security of the complicated
custom permission mechanism effectively. The previously
reported two attack cases [11] may be only the tip of the ice-
berg, and an automatic analysis tool is needed. Besides, our
ultimate target is supposed to be identifying design short-
comings lying in the permission framework, not just

discovering successful attack cases that can achieve privi-
lege escalation.

3.2 Automatic Analysis

On the high level, there exist two ways to conduct automatic
analysis for custom permissions: static analysis (e.g., analyz-
ing the source code of Android OS to find design flaws) and
dynamic analysis (e.g., executing multitudinous test cases
to trigger unexpected behaviors). In the end, we decided to
adopt the strategy of dynamic analysis for two main rea-
sons: (1) The internal implementation of the permission
mechanism is quite complicated. (2) Static analysis usually
requires prior knowledge to construct targeted models for
matching [12], [13], [33].

Also, inspired by the motivation case, the analysis pro-
cess could be abstracted as finding specific app execution
sequences that can trigger privilege escalation issues. The
internal operations of the permission mechanism could be
treated as a black-box accordingly. Following this high-level
idea, we designed an automatic fuzzing tool – CuPerFuz-

zer+ (see Section 4).

3.3 Threat Model

In our study, we consider a general local exploit scenario.
That is, the adversary can distribute malicious apps to app
markets. The user may download and install some mali-
cious apps on her Android phone. Note that this user
understands the security risks of sensitive permissions and
is cautious about granting permissions to apps. To conduct
malicious actions, malicious apps try to exploit the flaws
of custom permissions to access unauthorized platform
resources, such as obtaining dangerous system permis-
sions without user consent.

4 DESIGN OF CUPERFUZZER+

In this section, we introduce the detailed design of our auto-
matic analysis tool – CuPerFuzzer+. It treats the internal
operations of the Android permission framework as a
black-box and tries to trigger privilege escalation issues by
executing massive test cases. As discussed in Section 3.2,
each test case is essentially an app execution sequence com-
posed of various test apps and permission-related operations.
Besides, we also consider how to check the execution results
and identify critical paths to facilitate locating the causes
efficiently.

As illustrated in Fig. 5, on a high level, CuPerFuzzer+
contains five main steps, as follows:

Fig. 5. Overview of CuPerFuzzer+.

Fig. 4. Statistics on custom permission usage purposes.

4470 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on September 12,2023 at 10:25:48 UTC from IEEE Xplore. Restrictions apply.

1) Seed Generation. As the first step, CuPerFuzzer+

needs to generate a test app as the seed to activate
the subsequent fuzzing process.

2) Test Case Construction.Next, CuPerFuzzer+ dynam-
ically constructs plenty of complete cases for testing.

3) Test Case Execution. Then, CuPerFuzzer+ executes
test cases in a controlled environment in parallel.

4) Effective Case Checking. After executing a test case,
CuPerFuzzer+ checks whether a privilege escala-
tion issue has been triggered.

5) Critical Path Extraction. Finally, among all discovered
effective cases, CuPerFuzzer+ filters duplicated
cases and identifies critical paths.

4.1 Seed Generation

As mentioned in our threat model (see Section 3.3), we want
to discover local privilege escalation cases. Therefore, a suc-
cessful attack will be achieved by malicious apps installed
on the phone, and our fuzzing test will start with installing
a test app, say the seed app.

Seed Variables. This seed app defines and requests a
custom permission. Also, it requests all dangerous and
signature system permissions10. Three attributes of this
custom permission definition are variable, including:

� Permission name: based on a pre-defined list but can-
not be the same as a system permission.

� Protection level: normal, dangerous, or signature.
� Group: a certain system group or not set.
Note that we prepare a pre-defined permission name list

instead of random generating because some unusual names
may trigger unexpected behaviors, such as containing spe-
cial characters and starting with the general system permis-
sion prefix android.permission. Therefore, they need to
be constructed ingeniously.

Seed Generation Modes. The key components of the seed
app can be split into two apps, say one app defining the cus-
tom permission and the other app requesting permissions.
Also, they are signed by different certificates. Therefore, we
have two seed generation modes: single-app mode and dual-
app mode. Different modes will further affect the subsequent
step of test case construction.

Seed Generation. As a result, when generating a new seed,
CuPerFuzzer+ needs to determine the seed generation
mode and custom permission definition. In practice, to
avoid the time cost of real-time app construction, CuPer-
Fuzzer+ could construct plenty of test apps and store them
in a dataset in advance. When running tests, CuPerFuzzer
+ randomly selects an app from the prepared dataset as the
seed and quickly activates the fuzzing process.

4.2 Test Case Construction

Next, CuPerFuzzer+ constructs a complete test case. As
illustrated in Fig. 6, it is an app execution sequence consist-
ing of multiple test apps and operations that may affect the
granting of requested permissions.

Operation Selection. After reviewing the Android techni-
cal documents and source code [21], we confirm five opera-
tions meeting the requirement: app installation, app
uninstallation, app update, OS update, and device reboot.
All of them can trigger the system to refresh the granting
status of existing permissions.

� When installing a new app, new custom permission
definitions may be added to the system.

� When uninstalling an app, existing custom permis-
sion definitions may be removed.

� When updating an app, existing custom permission
definitions may be updated or removed.

� During major OS updates, new system permission
definitions may be added to the system, and existing
system permission definitions may be updated or
removed.

� During the device reboot, the system will recover the
granting status of requested permissions in apps
before the device shutdown.

Note that considering that updating an app is installing
(different versions of) this app multiple times, we do not
need to indicate the app update operation in test cases.

Test App Mutation. In the app installation operation, the
test app to install is the mutated version of the previously
installed test app, say the same package name and app sig-
nature. It changes some attributes (group and protection
level) of the previously defined custom permission or
removes this permission definition directly. For example, it
changes the protection level from normal to dangerous

and puts the custom permission into the PHONE group. The
permission name cannot be changed. Otherwise, it will
define a new permission. Also, in the dual-app mode, the
app defining the custom permission is treated as the test
app because we do not change the permission requests in
the whole execution sequence.

Test Case Construction. When CuPerFuzzer+ constructs
a test case, it randomly selects an undetermined number of
operations from the {app installation, app uninstallation, OS
update, device reboot} and combines them with the seed app
to generate a specific app execution sequence.

Also, to generate a meaningful test case, we set the fol-
lowing restrictions:

� The first operation must be seed app installation
because the fuzzing execution environment (physical
phone) will be reset before every test.

� Before executing an app uninstallation operation,
there must exist a test app for uninstalling. Uninstal-
ling a non-existing app is meaningless.

Fig. 6. Test case (app execution sequence) construction.

10. Note that it does not mean that these permissions have been
granted to the seed app. In fact, the granting of dangerous system per-
missions needs the user’s consent, and the signature ones cannot be
granted to the apps signed by different certificates from system apps.

LI ETAL.: ANDROID CUSTOM PERMISSIONS DEMYSTIFIED: A COMPREHENSIVE SECURITY EVALUATION 4471

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on September 12,2023 at 10:25:48 UTC from IEEE Xplore. Restrictions apply.

� In the single-app mode, the test app must exist on
the phone after executing the last operation. In other
words, the permission requests must exist at the end
of case execution.

� Device reboot operations cannot be continuous.
There is no change in the system between two con-
tinuous device reboot operations.

� The OS update operation only can be executed once.
Our test focuses on the latest version of Android OS
and thus only considers updating the OS from the
previous version to the current version.

Besides, we can control the fuzzing testing scale by limit-
ing the number of test cases deriving from one seed app.

4.3 Test Case Execution

In this step, CuPerFuzzer+ dynamically executes the oper-
ations in test cases in order. All operations are conducted on
physical devices equipped with AOSP Android OS, e.g.,
Google Pixel series phones. The reasons for not using
Android emulators (virtual devices) include:

� Emulators do not support the OS update operation.
� There may exist undocumentedmodifications in emu-

lators’ images to adapt to the underlying hardware.
Parallel Case Execution. To facilitate the automatic execution

of test cases on physical devices, a computer is used as the
controller to send test cases and monitor the execution status.
The communication between them is supported by adb

(Android Debug Bridge), a versatile command-line tool [34].
Also, CuPerFuzzer+ supports parallel execution by increas-
ing the number of test devices. It can assign test cases to differ-
ent devices to achieve the load balance during the testing.

As mentioned in Section 4.2, there are four kinds of opera-
tions in a test case. Among them, the app installation, app unin-
stallation, and device reboot operations can be executed
through theadbinstall,adbuninstall, andadbreboot

commands directly. To perform the OS update operation, we
combine the capabilities of adb and fastboot to automate
this process, that is, rebooting the device into the fastboot

mode andflashing a newOS image (withoutwiping data) [35].
Environment Reset. After completing a test case execution,

the test environment will be reset to the factory default status.
It should be noted that, in general, the user needs tomanually
authorize to allow the computer to interact with a device
throughadb. However, once the device is reset (through a fac-
tory reset or OS downgrade), the previous authorization sta-
tus will be erased, breaking the adb communication. To solve
this issue, we can modify the source code of Android OS and
compile a special version of the target OS image for test devi-
ces, which skips the authorization step and keeps adb always
open. More specifically, in the build.prop file of the image,
if ro.adb.secure is set to 0, the device will trust the con-
nected computer by default without user authorization. Also,
the image can be built with the userdebug type option to
support the always-open adb debugging [36].

4.4 Effective Case Checking

For each completed test case, CuPerFuzzer+ needs to
check whether it is an effective case achieving privilege
escalation. An effective case can be determined by checking
the granting status of the requested permissions in the test

app (or the app requesting permissions in the dual-app
mode). Expressly, we set the following two rules:

� Rule 1: The test app (or the app requesting permis-
sions in the dual-app mode) has been granted a
dangerous permission without user consent.

� Rule 2: The test app (or the app requesting permis-
sions in the dual-app mode) has been granted a
signature permission, but this test app and the
app defining this permission are signed by different
certificates.

Note that, in the whole process of test case execution,
CuPerFuzzer+ does not grant any dangerous permission
to the test app (or the app requesting permissions in the
dual-app mode) through simulating user interactions.

To automate this checking, CuPerFuzzer+ uses adb to
obtain the permission granting list of the test app (or the
app requesting permissions in the dual-app mode) and
extracts the granted permissions. If there is any granted
dangerous or signature permission matching the above
rules, this test case is effective and will be recorded for fur-
ther analysis.

4.5 Critical Path Extraction

After obtaining all effective test cases, CuPerFuzzer+

extracts the critical paths to assist the cause identifications.
A critical path is defined as the least necessary operations to
trigger a privilege escalation issue. An effective test case
contains multiple operations, and some operations are not
related to the final privilege escalation. Also, many similar
effective cases may be discovered in the test and contain the
same critical path. CuPerFuzzer+ extracts the critical
paths through the following steps:

1) Classify Test Cases. Discovered effective cases are
classified into different categories according to their
execution results. The test cases in the same category
should lead to the same permission granting status.

2) Find Critical Path. In each category, CuPerFuzzer+
finds the test cases with the least operations, called
candidate cases. To a randomly selected candidate
case, CuPerFuzzer+ deletes its first operation and
executes this pruned case. Also, this case should be
meaningful, meeting the restrictions mentioned in
Section 4.2. If the same execution result occurs,
CuPerFuzzer+ adds this pruned case to this cate-
gory and repeats this step. If it is different, CuPer-
Fuzzer+ deletes the second operation, and so on
until the last operation. If the execution results of all
pruned cases are different from the candidate case’s
execution result, the operation sequence of this can-
didate case is a critical path.

3) Delete Duplicate Cases. In the same category, if an
effective case’s operation sequence relatively con-
tains11 the extracted critical path, this case will be

11. The effective case’s operation sequence should contain the same
operations as the critical path, and the operations’ relative positions are
the same. For example, the operation sequence {Installation !
Device-reboot ! Uninstallation ! Installation} relatively
contains the critical path {Installation ! Uninstallation !
Installation}.

4472 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on September 12,2023 at 10:25:48 UTC from IEEE Xplore. Restrictions apply.

deleted. Note that, in this matching process, we do
not require that the apps used in the installation
operations are the same.

CuPerFuzzer+ repeats Step 2 and Step 3 until all effec-
tive cases have been deleted.

Finally, based on the extracted critical paths, we try to
find out the root causes of the discovered effective cases by
analyzing the source code of Android OS.

5 IMPLEMENTATION AND EXPERIMENT RESULTS

In this section, we present the prototype implementation of
CuPerFuzzer+ and summarize the experiment results.

5.1 Prototype Implementation

We implemented a full-feature prototype of CuPerFuzzer
+ with around 2,900 lines of Python code. Besides, in order
to make our framework fully automated, we integrated sev-
eral tools into it. For example, as mentioned in Section 4.3,
adb and fastboot are used for device control and case
execution.

For test app generation, Apktool [37] and jar-

signer [38] are integrated. Since our fuzzer needs lots of
test apps, it is impractical to generate them manually. In our
implementation, we first use Android Studio to build a
signed APK file that declares a custom permission. Then,
CuPerFuzzer+ decodes this APK file using Apktool to
obtain its manifest file. When generating a new app declar-
ing a new custom permission, CuPerFuzzer+ replaces the
old permission definition with the new one (in the manifest)
and then repackages the decoded resources back to an APK
file using Apktool as well. Finally, CuPerFuzzer+ uses
jarsigner to sign the APK file, and a new signed APK file
is built. Therefore, the whole process can be completed
automatically.

5.2 Experiment Setup

Hardware Setup. In our experiments, we deployed a com-
puter (Windows 10, 16G RAM, Intel Core i7) as the control-
ler and four Google Pixel 2 phones as the case execution
devices. The controller can assign test cases to different
phones for parallel execution.

Android OS. Our experiments focused on the custom per-
mission security issues on the latest version of Android OS,
which is Android 10. Following the approach described in
Section 4.3, we built two versions of Android OS images for
Pixel 2 based on the source code of AOSP Android 9
(PQ3A.190801.002) and 10 (QQ3A.200705.002). Note
that we only modified the adb connection and screen lock-
ing related parameters. CuPerFuzzer+ executes a test case
containing the OS update operation on the devices
equipped with Android 9 and flashes the Android 10 image
(without wiping data) to achieve the OS update. Other test
cases are executed on the devices equipped with Android
10.

Test Case Optimization. Since the amount of generated test
cases can be infinite in theory and dynamic execution is
time-consuming, we set some optimization measures to
control the experiment scale and improve the vulnerability
discovery efficiency.

Operations. If a test case contains many operations, it is
too complex to be exploited in practice. Therefore, we
empirically limited that a test case only can have up to five
operations (without counting the operation of seed app
installation).

Seed apps. When generating a seed app, the name of the
defined custom permission is a variable and cannot be the
same as a system permission. In order to follow this rule,
we extracted all declared system permissions12 from
Android 9 and Android 10. The results show that there are
88 system permissions (3 for normal, 3 for dangerous,
and 82 for signature) existing in Android 10 but not in
Android 9, as listed in Appendix B, available in the online
supplemental material. In Android 9, the permission with
any of these 88 system permission names will be treated as
a custom permission. Therefore, we randomly selected one
permission name from the new dangerous system per-
missions and the new signature system permissions,
respectively, and constructed the following pre-defined
permission name list for seed apps to handle this special
situation.

� android.permission.ACTIVITY_RECOGNI-

TION (new dangerous system permission in
Android 10)

� android.permission.MANAGE_APPOPS

(new signature system permission in Android 10)
� com.test.cp (a general custom permission name)
Note that the seed apps with the first two permission

names are only used to construct the test cases containing
the OS update operation. The last permission name is used
to construct all kinds of test cases. Also, we do not use the
name of a new normal system permission added in
Android 10 because normal permissions will be granted
automatically.

Since we have 2 seed generation modes, 3 available per-
mission names, 3 protection levels, and 12 system permis-
sion groups13 (as listed in Appendix C, available in the
online supplemental material), the combinations of custom
permission attributes could be calculated as Combinations =
2�3�3�13 (12 groups and no group) = 234. Therefore, 234
kinds of seed apps can be selected for our experiments in
total.

Test case execution. A seed app can generate lots of test
cases. To balance the coverage of test cases from different
seeds, we used the following case execution method.
CuPerFuzzer+ randomly selects a seed app and executes
a test case generated from it. This process is repeated until
all test cases have been executed or the controller interrupts
the testing.

5.3 Result Summary

In our experiments, CuPerFuzzer+ executed 119,418 test
cases on four Pixel 2 phones in 1256.2 hours (around 52.3
days) until we stopped it.

Efficiency. The average execution time is 151.5s per test
case in the experiments. In Table 3, we list the average time

12. Obtained by running adb shell pm list permissions -f -g.
13. Obtained by running adb shell pm list permission-

groups.

LI ETAL.: ANDROID CUSTOM PERMISSIONS DEMYSTIFIED: A COMPREHENSIVE SECURITY EVALUATION 4473

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on September 12,2023 at 10:25:48 UTC from IEEE Xplore. Restrictions apply.

cost of operation execution and environment reset in an
ideal environment (i.e., the test devices are well operated,
and every operation is executed successfully). The time cost
of an OS update or downgrade operation includes the cost
of image flashing and device reboot.

Results. Finally, CuPerFuzzer+ discovered 5,932 effec-
tive test cases triggering privilege escalation issues. All
effective cases were matched by the first checking rule
defined in Section 4.4, say obtaining dangerous permissions
without user consent. To the second rule (obtaining signa-

turepermissions), through analyzing the source code of
Android OS, we found that there is a checking process
before granting a signature permission, which cannot be
bypassed. This checking ensures that the app requesting a
signature permission is signed by the same certificate as
the app defining this permission.

As listed in Table 4, CuPerFuzzer+ further extracted 42
critical paths (PathNo:1� 41) from these discovered effective
cases. After manually checking and confirming, we identi-
fied 4 other critical paths (PathNo:42� 47). In this table, we
can find that if the critical path is very simple, many cases
may contain this path. For example, up to 3,843 effective
cases are derived from PathNo:4, a two-operation path
(Installation ! OS-update). Below we show some
interesting findings:

� The test cases based on PathNo:1 can obtain the
ACCESS_BACKGROUND_LOCATION permission.
While, in the similar PathNo:2;3, this permission is
missing.

� As mentioned in Section 3.1, the permission protec-
tion level changing operation has been blocked by
Google. However, in PathNo:5� 15;29� 39, an addi-
tional OS update or device reboot operation reacti-
vates such a privilege escalation attack.

� In PathNo:16;28; 40, the UNDEFINED group is an
undocumented system permission group but can be
listed by adb shell pm. It triggers 30 dangerous

system permissions (in different groups) to be
obtained.

� In PathNo:44� 47, the custom permission becomes a
signature permission after executing the last oper-
ation. However, this permission is granted to the app
as a dangerous one.

We manually analyzed the extracted 47 critical paths
and reviewed the corresponding source code of Android
OS. Finally, we identified six fatal design shortcomings
lying in the Android permission framework, as labeled in
the last column of Table 4. In the following sections, we
will discuss these shortcomings and their improvements
in detail.

Remarks. To support the additional control that users
have over an app’s access to location information, Android
10 introduces the ACCESS_BACKGROUND_LOCATION per-
mission [39]. The location permissions have been split into
two categories: foreground location permission (the ACCESS_-
FINE_LOCATION and ACCESS_COARSE_LOCATION per-
missions) and background location permission (the
ACCESS_BACKGROUND_LOCATION permission). If the app
running on Android 9 requests both kinds of location per-
missions at the same time, and it has got the foreground
location permission, it will be granted the background loca-
tion permission automatically after the OS being updated to
Android 10. Therefore, the test cases based on PathNo:1 can
obtain all location permissions. On the other hand, if the
app runs on Android 10, even if this app has got the granted
foreground location permission, it still needs the user’s con-
firmation of the background location permission granting
request. Thus, the ACCESS_BACKGROUND_LOCATION per-
mission is missing in Path No: 2; 3.

That is to say, in Android 10, there is isolation between
the foreground and background location permissions when
requesting them simultaneously. However, after analyzing
the source code of Android OS, we found that this isolation
can be broken due to the grouping of the location permis-
sion being alterable, as detailed in Appendix A, available in
the online supplemental material. This location permission-
specific issue has been confirmed by the Android security
team with rating Moderate severity (AndroidID-
186531661). Since this issue only involves the location per-
mission, we will not discuss it as a design shortcoming.

6 DESIGN SHORTCOMINGS AND ATTACKS

In this section, we analyze the discovered design shortcom-
ings in-depth and demonstrate the corresponding exploit
cases. Following the responsible disclosure policy, we
reported our findings to the Android security team, and all
of them have been confirmed. The corresponding fixes will
be released in the upcoming Android Security Bulletins.
Also, attack demos can be found at https://sites.google.
com/view/custom-permission.

6.1 DS#1: Dangling Custom Permission

As illustrated in Fig. 7, when an app is uninstalled or
updated, PackageManagerService (PMS for short)
will refresh the registration and granting status of all
permissions. During this process, if a dangerous (run-
time) custom permission’s definition is removed, the sys-
tem will also revoke its grants from apps. However, we
find that:

DS#1: If the removed custom permission is an install-time per-
mission, the corresponding permission granting status of apps
will be kept, causing dangling permission.

It means that, under this situation, an app has been
granted a normal or signature custom permission, but
there is no definition of this permission in the system.
Therefore, if another app re-defines this permission with
different attributes, it may trigger privilege escalation.

TABLE 3
Average Execution Time of Operations

4474 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on September 12,2023 at 10:25:48 UTC from IEEE Xplore. Restrictions apply.

https://sites.google.com/view/custom-permission
https://sites.google.com/view/custom-permission

TABLE 4
Extracted Critical Paths in the Experiments

y: In the app Installation operation, the custom permission defined by the installed test app is put into the square brackets ([]), which is represented as
[permission name, protection level, permission group]. NULL represents the corresponding attribute is not set.
z: They are similar critical paths, and the only difference is the used system group.

LI ETAL.: ANDROID CUSTOM PERMISSIONS DEMYSTIFIED: A COMPREHENSIVE SECURITY EVALUATION 4475

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on September 12,2023 at 10:25:48 UTC from IEEE Xplore. Restrictions apply.

Attack Case. The adversary creates and distributes two
apps to app markets, app-ds1-d and app-ds1-r (their
signing certificates can be the same or not). app-ds1-d
defines a normal custom permission com.test.cp, and
app-ds1-r requests com.test.cp and the CALL_PHONE

permission (dangerous system permission belonging to
the PHONE group). The adversary also prepares an updated
version of app-ds1-d that declares the following
permission:

Listing 3. Updated Custom Permission

<permission
android:name=“com.test.cp”
android:protectionLevel=“dangerous”
android:permissionGroup=“android.permission-group.

PHONE”> < =permission>

The user installs app-ds1-d and app-ds1-r on her
phone. At this moment, app-ds1-r has been granted nor-

mal com.test.cp. Then, she is induced to execute the fol-
lowing operations: uninstall app-ds1-d and install the
updated app-ds1-d. For example, a reasonable scenario is
that app-ds1-d frequently crashes deliberately. Then it
reminds the user to delete the current version and install a
new version. When the user installs the updated app-ds1-

d, PMS scans the package and adds the updated com.

test.cp to the system. After that, PMS iterates over the
existing apps to adjust the granting status of their requested
permissions. Since com.test.cp has become a danger-

ous permission, com.test.cp will be re-granted to app-

ds1-r as a dangerous permission. Further, the granting
of dangerous permissions is group-based. Since both
CALL_PHONE and com.test.cp are in the PHONE group,
app-ds1-r obtains the CALL_PHONE permission without
user consent.

Discussion. Through changing the PHONE group to other
permission groups, the malicious app can obtain arbitrary
dangerous system permissions.

The root cause of the attack case described in Section 3.1 is
also DS#1. It creates a dangling custom permission during
the first app update. However, it cannot be extended to
obtain system permissions through the group-based per-
mission granting. The reason is that, when handling run-
time permissions, their association with the permission
groups cannot be changed (cannot remove a permission
from a group and assign it to another group) [19].

Impact. DS#1 and its exploits (as two individual attack
cases in two reports) have been confirmed by Google. Both
reports were rated as High severity (AndroidID-
155648771 and AndroidID-165615162), and a CVE ID
has been assigned: CVE-2021-0307.

6.2 DS#2: Inconsistent Permission-Group Mapping

In Android, the grant of dangerous permissions is group-
based. If an app has been granted a dangerous permission,
it can obtain all the other permissions belonging to the same
group without user interactions. Therefore, the correct
<permission, group> mapping relationship is quite criti-
cal in this process.

As illustrated in Fig. 8, when Android OS processes a
dangerous permission granting request, it will query the
group (members) information of the requested permission
through ArrayMap mPermissionNameToGroup [40].
Based on the obtained <permission, group> mapping
information, the system can determine whether this permis-
sion can be granted to the app automatically, that is,
whether one permission of the group has been granted to
the app previously.

To facilitate this operation, the system needs to construct
mPermissionNameToGroup in advance. To each
requested permission, if its mapping relationship can be
found in mPermissionNameToGroup, no operation is

Fig. 7. Dangling custom permission.

Fig. 8. Inconsistent permission-group mapping.

4476 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on September 12,2023 at 10:25:48 UTC from IEEE Xplore. Restrictions apply.

needed. Otherwise, mPermissionNameToGroup will be
updated with adding new data. However, we find that:

DS#2: System and custom permissions rely on different sour-
ces to obtain the < permission, group> mapping relationship,
which may exist inconsistent definitions.

The system tries to obtain the group information of the
requested permission by querying PLATFORM_PERMIS-

SIONS and PackageManager. Since PLATFORM_PERMIS-

SIONS is a hard-coded < system permission, system group>
mapping array defined in PermissionController [41],
custom permissions cannot be found in this mapping array.
That is to say, if the requested permission is a custom permis-
sion, the system will invoke PackageManager to get the
group information. Note that, PackageManager relies on the
app’s AndroidManifest.xml to construct such mapping
data. Therefore, once there exist inconsistent definitions
between PLATFORM_PERMISSIONS and AndroidMani-

fest.xml, privilege escalationmay occur.
We find that, in Android 10, there indeed exist such

inconsistent definitions. Specifically, in the AndroidMani-

fest.xml of the app android (the core manifest file of the
system [42]), all dangerous system permissions are put
into a special permission group, named android.per-

mission-group.UNDEFINED. The adversary can exploit
such inconsistency and the group-based permission grant-
ing to obtain all dangerous system permissions (apart
from the ACCESS_BACKGROUND_LOCATION permission).

Attack Case. The adversary creates an app app-ds2 that
requests the WRITE_EXTERNAL_STORAGE permission, a com-
mon permission for saving app data. The user installs app-

ds2 and grantsWRITE_EXTERNAL_STORAGE to app-ds2.
Then, the adversary creates an updated version of app-

ds2, which defines and requests a dangerous custom per-
mission com.test.cp. Also, the updated app-ds2

requests all dangerous system permissions (apart from
the ACCESS_BACKGROUND_LOCATION permission), as
shown below:

Listing 4. Updated Version of app-ds2

<permission
android:name=“com.test.cp”
android:protectionLevel=“dangerous”
android:permissionGroup=“android.permission-group.

UNDEFINED” = >
<uses-permission android:name=“android.permission.

WRITE_EXTERNAL_STORAGE” = >
<uses-permission android:name=”android.permission.

SEND_SMS” = >
<uses-permission android:name=”android.permission.

CAMERA” = >
. . . < !��Omit lots of permission requests�� >
<uses-permission android:name=”android.permission.

BODY_SENSORS” = >
<uses-permission android:name=”com.test.cp” = >

Next, the user installs this updated version of app-ds2,
and the system automatically grants it all dangerous

system permissions (apart from the ACCESS_BACK-

GROUND_LOCATION permission) without user permitting.
As mentioned before (see Fig. 8), to each requested per-

mission, the system will add its group member information
to mPermissionNameToGroup. To system permissions
(Line 6-10), the <permission, group> mapping looks
like:

Listing 5.Mapping mPermissionNameToGroup

<WRITE_EXTERNAL_STORAGE, STORAGE>
< SEND_SMS, SMS>
<CAMERA, CAMERA>
. . .
<BODY_SENSORS, SENSORS>

When reaching the custom permission (Line 11), since it
belongs to the UNDEFINED group, and this group contains
all dangerous system permissions. The <permission,
group> mapping is refreshed as:

Listing 6. Updated Mapping mPermissionNameTo

Group

<WRITE_EXTERNAL_STORAGE, UNDEFINED>
< SEND_SMS, UNDEFINED>
<CAMERA, UNDEFINED>
. . .
<BODY_SENSORS, UNDEFINED>

Therefore, under this situation, if one dangerous permis-
sion (WRITE_EXTERNAL_STORAGE) has been granted, the
other dangerous permissions will be granted without user
permitting because they belong to the samepermission group,
that is, android.permission-group.UNDEFINED.

Discussion. Obviously, a hard-coded < system permis-
sion, system group> mapping table is more secure. How-
ever, Android allows app developers to put custom
permissions into system groups, which forces the system to
manage dynamic group information in the mix of different
types of permissions.

According to the commit logs [43], [44], in the source
code of Android OS, the UNDEFINED group was introduced
as a dummy group to prevent apps from obtaining the
grouping information (through PackageManager). The OS
developers commented, ”the grouping was never meant to be
authoritative, but this was not documented.”

Impact DS#2 and its exploit have been confirmed by Goo-
gle with rating High severity (AndroidID-153879813),
and a CVE ID has been assigned: CVE-2020-0418.

6.3 DS#3: Custom Permission Elevating

As illustrated in Fig. 9, during the Android OS initialization
(device booting), PackageManagerService (PMS for
short) will be constructed, which is used for managing all
package-related operations, such as installation and unin-
stallation. Then, PMS reads packages.xml and run-

time-permissions.xml to get the stored permission
declaration information and grant states.

After that, PMS scans APKs located in system folders and
then adds the parsed permissions to an internal structure.
Note that if the current owner of a parsed permission is not

LI ETAL.: ANDROID CUSTOM PERMISSIONS DEMYSTIFIED: A COMPREHENSIVE SECURITY EVALUATION 4477

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on September 12,2023 at 10:25:48 UTC from IEEE Xplore. Restrictions apply.

the system, this permission will be overridden, changing the
owner to the system. However, we find that:

DS#3: When Android OS overrides a custom permission, the
granting status of this permission is not revoked, further
resulting in permission elevating.

That is to say, if an app has been granted a custom per-
mission with the same name as a system permission, this
granted custom permission will be elevated to system per-
mission after permission overriding.

Attack Case. In general, an app cannot define a custom
permission with the same name as an existing permission.
However, if we consider the OS upgrading operation, this
scenario will become possible. For instance, on an Android
9 device, the adversary creates an app app-ds3, which
defines and requests a custom permission ACTIVITY_RE-

COGNITION, as follows:

Listing 7. Define and Request ACTIVITY_RECOGNITION

<permission
android:name=“android.permission.

ACTIVITY_RECOGNITION”
android:protectionLevel=“normal” = >
<uses-permission android:name=“android.permission.

ACTIVITY_RECOGNITION” = >

Note that the ACTIVITY_RECOGNITION permission is a
new dangerous system permission introduced in Android
10. However, on devices running Android 9, ACTIVITY_R-
ECOGNITION is only treated as a normal custom permission.

After the user installs app-ds3, she performs OTA OS
update, and later the device reboots with runningAndroid 10.
After finishing OS initialization, app-ds3 has been granted
the ACTIVITY_RECOGNITION permission (dangerous sys-
tempermission) automaticallywithout user consent.

Discussion. Our further investigation shows that DS#3
was introduced when Google fixed the Pileup flaw discov-
ered by Xing et al. [45]. An exploit scenario of Pileup is that,
in Android 2.3, a third-party app defines a normal custom
permission with the same name as a signature system
permission, which was added in Android 4.0. After OS
upgrading, this app becomes the owner of this new system
permission, and the protection provided by this permission
also becomes ineffective.

Google’s fix to the Pileup flaw is that, during the OS ini-
tialization, the OS will override all permissions declared by
the system, say taking the ownership [46]. However, in this
process, the OS still keeps the previous granting status,
which results in DS#3.

Impact. DS#3 and its exploit have been confirmed by Goo-
gle with rating High severity (AndroidID-154505240),
and a CVE ID has been assigned: CVE-2021-0306.

6.4 DS#4: Inconsistent Permission Definition

In the process of the app update, as Fig. 10 shows, if a cus-
tom permission’s protection level is changed from normal

or signature to dangerous, the system will keep its old
protection level. Such a design is to block the permission
upgrade attack (see upper Fig. 3). However, we find that:

DS#4: At this moment, the permission definition held by the
system is different from the permission definition provided by
the owner app, say inconsistent permission definition.

If there is any logic in refreshing the permission granting
status based on the source package in the system, a privilege
escalation issue may occur.

During the OS initialization (device booting), PMS also
needs to scan APKs located in app folders. Later, the exist-
ing custom permissions’ protection levels will be updated
according to the package information extracted from the
scanned APKs. That is, the custom permission definitions
recorded by the system will be updated. After the OS
refreshes all permission granting status, the corresponding
apps will be granted the updated custom permissions.

Fig. 9. Custom permission elevating.

Fig. 10. Inconsistent permission definition.

4478 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on September 12,2023 at 10:25:48 UTC from IEEE Xplore. Restrictions apply.

Attack Case. The adversary creates an app app-ds4 that
defines and requests a normal custom permission com.

test.cp. There is also an updated version of app-ds4

that changes the protection level of com.test.cp to dan-

gerous and puts it into the PHONE group. It also requests
the CALL_PHONE permission. The user installs app-ds4

and then updates it. After that, she reboots her phone.
When the OS initialization is complete, app-ds4 obtains
com.test.cp (dangerous custom permission) auto-
matically. Then it can obtain the CALL_PHONE permission
without user consent because both com.test.cp and
CALL_PHONE belong to the PHONE group.

Discussion. As mentioned in Section 3.1, DS#4 was intro-
duced when Google fixed the vulnerability discovered by
Tuncay et al. [11]. Google’s fix only considers how to break
the attack flow with the minimum code modifications but
ignores the consistency issue [32].

Impact. DS#4 and its exploit have been confirmed by Goo-
gle with rating High severity (AndroidID-168319670),
and a CVE ID has been assigned: CVE-2021-0317.

6.5 DS#5: Dormant Permission Group

As mentioned in Section 2.2, for the runtime permission
request, the system will present a permission dialog to the
user. The text in the dialog references the permission group
associated with the permission. If the group is a system
group, the displayed text cannot be modified by a third-
party app because the third-party app cannot re-define a
system group. However, we find that:

DS#5: While a group has not been defined, permissions still can
be assigned to this group. However, this group will not be effec-
tive until it is defined, leading to dormant permission group.

It means that if a dangerous (runtime) custom permis-
sion belongs to a dormant permission group, its manage-
ment will not be group-based before this group becomes
effective. The system will still show the custom permission’s
description (can be customized by a third-party app) to the
user rather than the group’s information. Therefore, if the
dormant permission group is a system group, a privilege
escalation issue may occur.

Attack Case. In general, system groups are defined by sys-
tem apps that are pre-installed in the system. Thus, system
groups cannot be dormant. However, like DS#3, if we con-
sider the OS update operation, a dormant system group
may exist. For example, on the device running Android 9,
the adversary creates an app app-ds5 that defines a

dangerous custom permission com.test.cp and puts it
into the ACTIVITY_RECOGNITION

14 group. Also, app-

ds5 requests this custom permission and the ACTIVI-

TY_RECOGNITION
15 permission (belonging to the ACTIVI-

TY_RECOGNITION group).
Note that the ACTIVITY_RECOGNITION group is a new

system group introduced in Android 10. Thus, it is a dormant
group in Android 9.

The user first installs app-ds5. Then, she is induced to
grant com.test.cp to app-ds5. Since the system will
show the permission’s description, the adversary can give
the permission a misleading description (as shown in
Fig. 11a) to make the user believe that granting this permis-
sion is necessary or fake it as another common permission
for saving app data (as shown in Fig. 11b). Next, she
upgrades the device to Android 10 through OTA OS
update. During the OS initialization, the definition of the
ACTIVITY_RECOGNITION group will be added to the sys-
tem (as shown in Fig. 12), and this dormant permission
group will become effective. Finally, since both com.test.

cp and ACTIVITY_RECOGNITION are in the ACTIVI-

TY_RECOGNITION group, app-ds5 gets the ACTIVI-

TY_RECOGNITION permission (dangerous system
permission) without user consent.

Discussion. The runtime permissionmodel provides excel-
lent transparency for the permission request and makes the
user more cautious about granting a sensitive system per-
mission to an app. If there is a mismatch between the system
permission and the app’s purpose, the user will deny the
permission request. However, the transparency fails to apply
to a dormant system group, which misleads the user to grant
a seemingly necessary or insensitive permission.

Also, as discussed in Section 6.1, the permission groups
associated with the runtime permissions cannot be changed.
However, the dormant groups are not restricted by this rule
(i.e., can remove a permission from a group and assign it to
another dormant group).

Impact. DS#5 and its exploit have been confirmed by Goo-
gle with ratingModerate severity (AndroidID- 176828496).

Fig. 11. Induce the user to grant a runtime custom permission to the app
app-ds5 in Android 9. (a) Give the permission a misleading description.
(b) Fake the permission as a common one for saving app data.

Fig. 12. Dormant permission group.

14. Full name: android.permission-group.ACTIVITY_

RECOGNITION.

15. Full name:android.permission.ACTIVITY_RECOGNITION.

LI ETAL.: ANDROID CUSTOM PERMISSIONS DEMYSTIFIED: A COMPREHENSIVE SECURITY EVALUATION 4479

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on September 12,2023 at 10:25:48 UTC from IEEE Xplore. Restrictions apply.

6.6 DS#6: Inconsistent Permission Type

As illustrated in Fig. 13, if a custom permission is changed
from normal to signature during the app update, and
the app requesting it does not pass the signature checking
(as mentioned in Section 5.3), the updated signature per-
mission will not be granted to the app, and further, the sys-
tem will revoke its previous grant (as a normal one) from
the app. However, we find that:

DS#6: If this signature custom permission is updated from
dangerous, its previous grant (as a dangerous one) will
not be revoked, causing inconsistent permission type.

That is to say, under this situation, an app has been
granted a dangerous custom permission, but in the sys-
tem, this custom permission is a signature permission.
What is more, Android only checks the names of permis-
sions during permission enforcement [11]. It cannot distin-
guish the two permissions with the same name but different
types. Thus, the app can hold a dangerous custom permis-
sion to gain unauthorized access to the resource protected
by a signature custom permission.

Attack Case. The user has installed an app app-ds6-

victim on her phone. This app declares a dangerous cus-
tom permission com.test.cp and uses this permission to
protect its resources. The adversary prepares an app app-

ds6-attacker requesting com.test.cp. Note that app-
ds6-attacker and app-ds6-victim are signed by dif-
ferent certificates.

The user installs app-ds6-attacker and grants it the
com.test.cp permission. Once app-ds6-victim is
updated, and com.test.cp is changed from dangerous

to signature (e.g., the protected resources become more
private and only can be shared by some specific apps),
app-ds6-attacker can still access the protected resour-
ces even if it is not authorized by app-ds6-victim.

Discussion. In general, the grant of signature permis-
sions is certain, depending on apps’ certificates. Whereas

Android only relies on the names to distinguish permis-
sions when enforcing the permission control. As a result,
the signature permissions can be downgraded to dan-

gerous ones, and the grant of them becomes uncertain,
depending on users’ decisions.

Impact. DS#6 and its exploit have been confirmed by Goo-
gle with rating Low severity (AndroidID-155649020).

7 SECURE CUSTOM PERMISSIONS

This section proposes some improvements to mitigate the
current security risks and discusses general design guide-
lines for custom permissions. Also, due to the consideration
of backward compatibility, we will not introduce heavy
changes to the current permission framework.

7.1 Mitigation

For each design shortcoming, we propose a minimum mod-
ification (Google preferred fix), which can immediately pre-
vent the corresponding attacks.

For DS#1, the adversary re-defines a dangling custom
permission and changes the original permission attributes.
The direct fix is that, when the system removes a custom
permission, its grants for apps should be revoked.

For DS#2, the adversary exploits the inconsistency in
AndroidManifest.xml and PLATFORM_PERMISSIONS.
Therefore, the direct fix is to remove the current inconsistent
permission-group mapping data (the UNDEFINED group).

For DS#3, the adversary can elevate a custom permission
to a system permission. The direct fix is that, when the sys-
tem takes ownership of a custom permission, its grants for
apps should be revoked.

For DS#4, the adversary exploits the inconsistent permis-
sion definitions in the system and the owner app. The direct
fix is that, during the permission update, its grants for apps
should be revoked.

For DS#5, the adversary puts a custom permission into a
dormant permission group. The direct fix is that, permis-
sions cannot be assigned to an undefined group.

For DS#6, the adversary exploits the inconsistency in the
permission’s definition and its granting status. The direct
fix is the same as DS#4 (i.e., during the permission update,
its grants for apps should be revoked) because both of them
involve the process of the permission update.

7.2 General Security Guidelines

Though the above solutions can fix the discovered design
shortcomings, it is difficult to avoid that custom permission
related flaws will be introduced again in the future versions
of Android OS. Here we discuss some general design guide-
lines to secure custom permissions.

The previous research proposed to isolate system per-
missions from custom permissions, including (1) introduc-
ing distinct representations and not allowing custom
permissions to share groups with system permissions, and
(2) introducing an internal naming convention to prevent
naming collisions [11]. Such solutions surely could avoid
many security risks. However, they are against the design
philosophy of Android permission management (i.e., do
not distinguish system and custom permissions, see Sec-
tion 2.2). Also, these solutions will introduce heavy logic

Fig. 13. Inconsistent permission type.

4480 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on September 12,2023 at 10:25:48 UTC from IEEE Xplore. Restrictions apply.

and code changes to the OS. Most importantly, they do not
essentially fix the defects, like eliminating inconsistencies
mentioned in DS#2, DS#4, and DS#6. Instead, we propose
the following three guidelines without differentiating sys-
tem and custom permissions, and avoiding logical errors.

Guideline#1: Any part of a permission’s definition should
always exist.

Any dangling part of a permission’s definition can be
exploited to achieve some malicious behaviors. DS#1 causes
a dangling permission definition that can be exploited to
change the permission granting status. DS#5 causes a dan-
gling grouping of the permission that can be exploited to
trick users into allowing the permission granting request.
Also, the existence of each part of a definition is beneficial
to ensure the transparency of runtime permission requests.

Guideline#2: The definition of a permission held by the system
should be consistent with the permission owner’s declaration.

The system obtains the permission definition through
parsing the owner app’s manifest file. The subsequent per-
mission management should always rely on the definition
obtained at this stage. Any inconsistent permission defini-
tion (different protection levels or grouping) may trigger
permission upgrading. The permission-group mapping is
inconsistent in DS#2, and the protection level is inconsistent
in DS#4.

Guideline#3: If the definition of a permission is changed, the
corresponding grants for apps should be revoked.

The changes contain permission owner, grouping, and
protection level. This guideline prevents the risk of TOCT-
TOU (time-of-check to time-of-use) issues. That is, the user
only confirms the grant of the original permission, not the
updated permission. To both DS#1 and DS#3, the permis-
sion owner is changed without revoking grants. This guide-
line also can cover DS#4, DS#6, and the two attack cases
(changed protection level and permission owner) discov-
ered by Tuncay et al. [11].

8 DISCUSSION

In this work, we proposed CuPerFuzzer+ to detect the
vulnerabilities in Android custom permissions and elabo-
rated the findings of our experiments. Here we discuss
some limitations of our work.

Attacks in Practice. Some attacks described in Section 6
need user interactions more than once. For instance, if an
adversary wants to exploit DS#1, she needs to prepare two
malicious apps and induce a victim user to re-install an app
after uninstalling it. Such an attack workflow may be diffi-
cult to execute in practice. It is likely that, after the user
uninstalls a buggy app, she may not install it again. There-
fore, it would be better to conduct a user study to

demonstrate the feasibility of the proposed attacks relying
on multiple user interactions.

Test Case Generation. CuPerFuzzer+ needs to generate
massive test cases for fuzzing. In our design, CuPerFuzzer+
constructs a test case randomly, including random seed
selection and operation sequence construction. To improve
the effectiveness of vulnerability discovery, we could deploy
some feedback mechanism to generate more interesting test
cases. That is, the current case execution result will affect
how to generate the next test case. However, a feedback
mechanism may result in generating too many similar test
cases that are duplicate from the view of critical paths. Thus,
it needs to trade off the diversity against the effectiveness of
test cases.

9 RELATED WORK

The Android permission mechanism has been studied by
plenty of previous work. However, most research focused
on system permissions, and rare work noticed the security
implications of custom permissions. In this section, we
review the related work on Android permissions.

Custom Permissions. The first custom permission related
flaw was described in a blog [47]. It noticed the installation
order issue of custom permissions, say ”first one in wins”
strategy. Nevertheless, Google did not accept this issue and
mentioned, ”this is the way permissions work” [48].

Xing et al. [45] discovered the Pileup flaw, which
achieves privilege escalation through OS upgrading. One
attack case is to exploit a custom permission to hijack a sys-
tem permission. Nevertheless, their research focused on the
Android OS updating mechanism rather than the custom
permissions. Tuncay et al. [11] identified two classes of vul-
nerabilities in custom permissions that result from mixing
system and custom permissions. In order to address these
shortcomings, they proposed a new modular design called
Cusper. According to our study, such a design is against the
design philosophy of Android permission management.
More recently, Gamba et al. [49] extracted and analyzed the
custom permissions, both declared and requested, by pre-
installed apps on Android devices. However, they focused
on the aspect of service integration and commercial partner-
ships, not the security implications.

Unlike the above research, in this paper, we systemati-
cally study the security implications of Android custom per-
missions, not just individual bugs. Also, all previous flaws
related to custom permissions were discovered manually.
Considering the lack of an automatic tool to detect the
design flaws lying in the Android permission framework,
we developed CuPerFuzzer+ and utilized it to discover
several new vulnerabilities successfully. We also propose
feasible fix solutions and design guidelines.

Permission Models. Various previous work studied the
design of the permission-based security model. Barrera et al.
[50] proposed a self-organizing map-based methodology to
analyze the permission model of the early version of
Android OS. Wei et al. [51] studied the evolution of the
Android ecosystem (platform and apps) to understand the
security implications of the permission model. Fragkaki
et al. [12] developed a framework for formally analyzing
Android-style permission systems. Backes et al. [2] studied

LI ETAL.: ANDROID CUSTOM PERMISSIONS DEMYSTIFIED: A COMPREHENSIVE SECURITY EVALUATION 4481

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on September 12,2023 at 10:25:48 UTC from IEEE Xplore. Restrictions apply.

the internals of the Android application framework and
provided a high-level classification of its protected resour-
ces. Based on Android 6.0, Zhauniarovich et al. [1] analyzed
the design of the permission system, especially the intro-
duction of runtime permissions. More recently, Tuncay et al.
[52] identified false transparency attacks in the runtime per-
mission model, which achieves the phishing-based privilege
escalation on runtime permissions.

To improve the current permission model, Dawoud et al.
[3] proposed DroidCap to achieve per-process permission
management, which removes Android’s UID-based ambient
authority. Raval et al. [53] proposed Dalf, a framework for
extensible permissions plugins that provides both flexibility
and isolation. The possibilities of flexible and fine-grained
permission management also were studied by ipShield [54],
SemaDroid [55], SweetDroid [56], andDr. Android [57].

PermissionUsage. From the aspect of app developers, some
researchers focused on studying whether permissions were
used correctly in Android apps. Felt et al. [4] developed a
tool – Stowaway to detect over-privilege in apps, and they
found that about one-third are over-privileged. Au et al. [58]
built PScout to extract the permission specification from the
Android OS source code using static analysis, which pro-
vided meta-data supports for the permission usage analysis.
Xu et al. [5] designed and implemented Permlyzer, a frame-
work for automatically analyzing the use of permissions in
Android apps. Fang et al. [6] analyzed the potential side
effects of permission revocation in Android apps.

Usable Security. From the view of user interaction, previ-
ous work has shown that most users do not pay attention to
permissions during app installation [59]. Bonn�e et al. [60]
focused on the usability of runtime permissions, and their
study suggests the context provided via runtime permis-
sions appears to be helping users make decisions. The study
of Wijesekera et al. [61] shows the visibility of the requesting
app and the frequency at which requests occur are two sig-
nificant factors in designing a runtime consent platform.
More recently, Shen et al. [62] identified several common
misunderstandings on the runtime permission model
among users due to the limited system-provided informa-
tion and explored five types of information that are helpful
for users’ decisions on the runtime permission requesting.

10 CONCLUSION

In this paper, we systematically study the security implica-
tions of Android custom permissions. Specifically, we
designed CuPerFuzzer+, a black-box fuzzer, to detect cus-
tom permission related privilege escalation issues automati-
cally. During the real-world experiments, it discovered
5,932 effective cases with 47 critical paths successfully. Our
further analysis showed that these effective cases could be
attributed to six fundamental design shortcomings lying in
the Android permission framework. We also demonstrated
concrete exploit cases of these flaws and proposed general
design guidelines to secure Android custom permissions.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful
comments.

REFERENCES

[1] Y. Zhauniarovich and O. Gadyatskaya, “Small changes, big
changes: An updated view on the Android permission system,”
in Proc. 19th Int. Symp. Res. Attacks Intrusions Defenses, 2016,
pp. 346–367.

[2] M. Backes, S. Bugiel, E. Derr, P. D. McDaniel, D. Octeau, and
S. Weisgerber, “On demystifying the Android application frame-
work: Re-visiting android permission specification analysis,” in
Proc. 25th USENIX Secur. Symp. USENIX-SEC, 2016, pp. 1101–
1118.

[3] A. Dawoud and S. Bugiel, “DroidCap: OS support for capability-
based permissions in Android,” in Proc. 26th Annu. Netw. Distrib.
Syst. Secur. Symp., 2019, pp. 1–15.

[4] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. A. Wagner,
“Android permissions demystified,” in Proc. 18th ACM Conf.
Comput. Commun. Secur, 2011, pp. 627–638.

[5] W. Xu, F. Zhang, and S. Zhu, “Permlyzer: Analyzing permission
usage in Android applications,” in Proc. IEEE 24th Int. Symp.
Softw. Rel. Eng., 2013, pp. 400–410.

[6] Z. Fang et al. “revDroid: Code analysis of the side effects after
dynamic permission revocation of Android apps,” in Proc. 11th
ACM Asia Conf. Comput. Commun. Secur., 2016, pp. 747–758.

[7] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin,
“Permission re-delegation: Attacks and defenses,” in Proc. 20th
USENIX Secur. Symp. USENIX-SEC, 2011, pp. 331–346.

[8] Y. Zhang et al., “Vetting undesirable behaviors in Android apps
with permission use analysis,” in Proc. 20th ACM Conf. Comput.
Commun. Secur., 2013, pp. 611–622.

[9] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck,
“DREBIN: Effective and explainable detection of Android mal-
ware in your pocket,” in Proc. 21st Annu. Netw. Distrib. Syst. Secur.
Symp., 2014, pp. 1–12.

[10] “Define a custom app permission.” Accessed: Jul. 4, 2021. [Online].
Available: https://developer.android.com/guide/topics/
permissions/defining

[11] G. S. Tuncay, S. Demetriou, K. Ganju, and C. A. Gunter,
“Resolving the predicament of Android custom permissions,” in
Proc. 25th Netw. Distrib. Syst. Secur. Symp., 2018, pp. 1–15.

[12] E. Fragkaki, L. Bauer, L. Jia, and D. Swasey, “Modeling and
enhancing Android’s permission system,” in Proc. 17th Eur. Symp.
Res. Comput. Secur, 2012, pp. 1–18.

[13] H. Bagheri, E. Kang, S. Malek, and D. Jackson, “Detection of
design flaws in the Android permission protocol through
bounded verification,” in Proc. Formal Methods 20th Int. Symp.,
2015, pp. 73–89.

[14] “Security updates and resources: Severity.” Accessed: Jul. 4, 2021.
[Online]. Available: https://source.android.com/security/
overview/updates-resources#severity

[15] R. Li, W. Diao, Z. Li, J. Du, and S. Guo, “Android custom permis-
sions demystified: From privilege escalation to design short-
comings,” in Proc. 42nd IEEE Symp. Secur. Privacy, 2021, pp. 70–86.

[16] “PackageManager.” Accessed: Sep. 3, 2020. [Online]. Available:
https://cs.android.com/android/platform/superproject/
þ/android-10.0.0_r30:frameworks/base/services/core/java/
com/android/server/pm/

[17] “PermissionController.” Accessed: Sep. 3, 2020. [Online]. Avail-
able: https://cs.android.com/android/platform/superproject/
þ/android-10.0.0_r30:packages/apps/PermissionController/

[18] “Permissions overview: Protection levels.” Accessed: Sep. 3, 2020.
[Online]. Available: https://developer.android.com/guide/
topics/permissions/overview#normal-dangerous

[19] “Runtime permissions.” Accessed: Jul. 4, 2021. [Online]. Available:
https://source.android.com/devices/tech/config/runtime_perms

[20] “Permissions overview: Permission groups.” Accessed: Sep. 3,
2020. [Online]. Available: https://developer.android.com/
guide/topics/permissions/overview#perm-groups

[21] “PackageManagerService.java.” Accessed: Sep. 3, 2020. [Online].
Available: https://cs.android.com/android/platform/superproject/
þ/android-10.0.0_r30:frameworks/base/services/core/java/com/
android/server/pm/PackageManagerService.java

[22] “Google play instant.” Accessed: Jul. 4, 2021. [Online]. Available:
https://developer.android.com/topic/google-play-instant

[23] “Scrapy.” Accessed: Jul. 4, 2021. [Online]. Available: https://scrapy.
org/

[24] “Androguard,” 2020. [Online]. Available: https://github.com/
androguard

4482 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on September 12,2023 at 10:25:48 UTC from IEEE Xplore. Restrictions apply.

https://developer.android.com/guide/topics/permissions/defining
https://developer.android.com/guide/topics/permissions/defining
https://source.android.com/security/overview/updates-resources#severity
https://source.android.com/security/overview/updates-resources#severity
https://cs.android.com/android/platform/superproject/+/android-10.0.0_r30:frameworks/base/services/core/java/com/android/server/pm/
https://cs.android.com/android/platform/superproject/+/android-10.0.0_r30:frameworks/base/services/core/java/com/android/server/pm/
https://cs.android.com/android/platform/superproject/+/android-10.0.0_r30:frameworks/base/services/core/java/com/android/server/pm/
https://cs.android.com/android/platform/superproject/+/android-10.0.0_r30:packages/apps/PermissionController/
https://cs.android.com/android/platform/superproject/+/android-10.0.0_r30:packages/apps/PermissionController/
https://developer.android.com/guide/topics/permissions/overview#normal-dangerous
https://developer.android.com/guide/topics/permissions/overview#normal-dangerous
https://source.android.com/devices/tech/config/runtime_perms
https://developer.android.com/guide/topics/permissions/overview#perm-groups
https://developer.android.com/guide/topics/permissions/overview#perm-groups
https://cs.android.com/android/platform/superproject/+/android-10.0.0_r30:frameworks/base/services/core/java/com/android/server/pm/PackageManagerService.java
https://cs.android.com/android/platform/superproject/+/android-10.0.0_r30:frameworks/base/services/core/java/com/android/server/pm/PackageManagerService.java
https://cs.android.com/android/platform/superproject/+/android-10.0.0_r30:frameworks/base/services/core/java/com/android/server/pm/PackageManagerService.java
https://developer.android.com/topic/google-play-instant
https://scrapy.org/
https://scrapy.org/
https://github.com/androguard
https://github.com/androguard

[25] W. Diao et al., “Kindness is a risky business: On the usage of the
accessibility APIs in Android,” in Proc. 22nd Int. Symp. Res. Attacks
Intrusions Defenses, 2019, pp. 261–275.

[26] J. Huang et al., “SUPOR: Precise and scalable sensitive user input
detection for Android apps,” in Proc. 24th USENIX Secur. Symp.
USENIX-SEC, 2015, pp. 977–992.

[27] S. Junyi, “Jieba,” 2020. [Online]. Available: https://github.com/
fxsjy/jieba

[28] J. Thanaki, “Feature engineering and NLP algorithms,” in Python
Natural Lang. Process., ch. 5. Birmingham, U.K.: Packt Publishing,
2017, pp. 102–171.

[29] “JPush.” Accessed: Jul. 4, 2021. [Online]. Available: https://docs.
jiguang.cn/en/jpush/guideline/intro/

[30] “Rongling cloud communication.” Accessed: Jul. 4, 2021. [Online].
Available: https://www.yuntongxun.com/

[31] Z. Yan, “AndPermission,” 2020. [Online]. Available: https://github.
com/yanzhenjie/AndPermission

[32] S. Ganov, “Bug: 33860747,” 2016. [Online]. Available: https://
android.googlesource.com/platform/frameworks/base/
þ/78efbc95412b8efa9a44d573f5767ae927927d48

[33] A. Sadeghi, R. Jabbarvand, N. Ghorbani, H. Bagheri, and S. Malek,
“A temporal permission analysis and enforcement framework for
Android,” in Proc. 40th Int. Conf. Softw. Eng., 2018, pp. 846–857.

[34] “Androiddebugbridge (ADB).” Accessed: Jul. 4, 2021. [Online].Avail-
able: https://developer.android.com/studio/command-line/adb

[35] “Factory images for nexus and pixel devices: Flashing instructions.”
Accessed: Jul. 4, 2021. [Online]. Available: https://developers.google.
com/android/images#instructions

[36] “Building Android.” Accessed: Jul. 4, 2021. [Online]. Available:
https://source.android.com/setup/build/building

[37] “Apktool.” Accessed: Jul. 4, 2021. [Online]. Available: https://
ibotpeaches.github.io/Apktool/

[38] “Signing JARfiles.” Accessed: Jul. 4, 2021. [Online].Available: https://
docs.oracle.com/javase/tutorial/deployment/jar/signing.html

[39] “Access to device location in the background requires permission.”
Accessed: Jul. 4, 2021. [Online]. Available: https://developer.android.
google.cn/about/versions/10/privacy/changes#app-access-device-
location

[40] “AppPermissions.java.” Accessed: Jul. 4, 2021. [Online]. Available:
https://cs.android.com/android/platform/superproject/þ/android-
10.0.0_r30:packages/apps/PermissionController/src/com/android/
packageinstaller/permission/model/AppPermissions.java

[41] “Utils.java.” Accessed: Sep. 3, 2020. [Online]. Available: https://
cs.android.com/android/platform/superproject/þ/android-
10.0.0_r30:packages/apps/PermissionController/src/com/
android/packageinstaller/permission/utils/Utils.java

[42] “AndroidManifest.xml.” Accessed: Sep. 3, 2020. [Online]. Available:
https://cs.android.com/android/platform/superproject/þ/android-
10.0.0_r30:frameworks/base/core/res/AndroidManifest.xml

[43] P. P. Moltmann, “Remove grouping for platform permissions,”
2018. [Online]. Available: https://android.googlesource.com/
platform/frameworks/base/þ/17eae45cf9a3948ed268e51bf13528
ad82a465f0

[44] P. P. Moltmann, “Give platform permissions a dummy group,”
2018. [Online]. Available: https://android.googlesource.com/
platform/frameworks/base/þ/2a01ddbb4ea572ec82687dc0
d9602eff36cc0886

[45] L. Xing, X. Pan, R. Wang, K. Yuan, and X. Wang, “Upgrading your
Android, elevating my malware: Privilege escalation through
mobile OS updating,” in Proc. 35th IEEE Symp. Secur. Privacy,
2014, pp. 393–408.

[46] C. Tate, “Bug: 11242510,” 2013. [Online]. Available: https://android.
googlesource.com/platform/frameworks/base/þ/3aeea1f

[47] M. L. Murphy, “Vulnerabilities with Custom Permissions,” 2014.
[Online]. Available: https://commonsware.com/blog/2014/02/
12/vulnerabilities-custom-permissions.html

[48] “Permissions are install-order dependent,” 2018. [Online]. Avail-
able: https://issuetracker.google.com/issues/36941003

[49] J. Gamba, M. Rashed, A. Razaghpanah, J. Tapiador, and N. Val-
lina-Rodriguez, “An analysis of pre-installed Android software,”
in Proc. 41st IEEE Symp. Secur. Privacy, 2020, pp. 1039–1055.

[50] D. Barrera, H. G. Kayacik, P. C. van Oorschot, and A. Somayaji,
“A methodology for empirical analysis of permission-based secu-
rity models and its application to Android,” in Proc. 17th ACM
Conf. Comput. Commun. Secur., 2010, pp. 73–84.

[51] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, “Permission evo-
lution in the Android ecosystem,” in Proc. 28th Annu. Comput.
Secur. Appl. Conf., 2012, pp. 31–40.

[52] G. S. Tuncay, J. Qian, and C. A. Gunter, “See no evil: Phishing for
permissions with false transparency,” in Proc. 29th USENIX Secur.
Symp. USENIX-SEC Virt., 2020, pp. 415–432.

[53] N. Raval, A. Razeen, A. Machanavajjhala, L. P. Cox, and A. War-
field, “Permissions plugins as Android Apps,” in Proc. 17th Annu.
Int. Conf. Mobile Syst. Appl. Services, 2019, pp. 180–192.

[54] S. Chakraborty, C. Shen, K. R. Raghavan, Y. Shoukry, M. Millar,
and M. B. Srivastava, “ipShield: A framework for enforcing con-
text-aware privacy,” in Proc. 11th USENIX Symp. Netw. Syst. Des.
Implementation, 2014, pp. 143–156.

[55] Z. Xu and S. Zhu, “SemaDroid: A privacy-aware sensor manage-
ment framework for smartphones,” in Proc. 5th ACM Conf. Data
Appl. Secur. Privacy, 2015, pp. 61–72.

[56] X. Chen, H. Huang, S. Zhu, Q. Li, and Q. Guan, “SweetDroid:
Toward a context-sensitive privacy policy enforcement frame-
work for Android OS,” in Proc. Workshop Privacy Electron. Soc.,
2017, pp. 75–86.

[57] J. Jeon et al., “Dr. Android and Mr. Hide: Fine-grained permis-
sions in Android applications,” in Proc. 2nd Workshop Secur. Pri-
vacy Smartphones Mobile Devices, 2012, pp. 3–14.

[58] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “PScout: Analyzing
the Android permission specification,” in Proc. 19th ACM Conf.
Comput. Commun. Secur., 2012, pp. 217–228.

[59] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. A. Wag-
ner, “Android permissions: User attention, comprehension,
and behavior,” in Proc. 8th Symp. Usable Privacy Secur., 2012,
pp. 3:1–3:14.

[60] B. Bonn�e, S. T. Peddinti, I. Bilogrevic, and N. Taft, “Exploring
decision making with Android’s runtime permission dialogs
using in-context surveys,” in Proc. 13th Symp. Usable Privacy Secur,
2017, pp. 195–210.

[61] P. Wijesekera, A. Baokar, A. Hosseini, S. Egelman, D. A. Wagner,
and K. Beznosov, “Android permissions remystified: A field
study on contextual integrity,” in Proc. 24th USENIX Secur. Symp.
USENIX-SEC, 2015, pp. 499–514.

[62] B. Shen et al., “Can systems explain permissions better? Under-
standing users’ misperceptions under smartphone runtime per-
mission model,” in Proc. 30th USENIX Secur. Symp. USENIX-SEC,
2021, pp. 751–768.

Rui Li received the BEng degree in information
security from the Central University of Finance
and Economics, Beijing, China, in 2019. She is
currently working toward the PhD degree at the
School of Cyber Science and Technology, Shan-
dong University, Qingdao, China. Her research
interests include system security and mobile
security.

Wenrui Diao received the PhD degree in infor-
mation engineering from the Chinese University
of Hong Kong, Hong Kong, in 2017, under the
supervision of Prof. Kehuan Zhang. He is cur-
rently a professor with the School of Cyber Sci-
ence and Technology, Shandong University,
Qingdao, China. His research interests include
mobile security and IoT security. He received the
2019 ACM SIGSAC China Rising Star Award.

LI ETAL.: ANDROID CUSTOM PERMISSIONS DEMYSTIFIED: A COMPREHENSIVE SECURITY EVALUATION 4483

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on September 12,2023 at 10:25:48 UTC from IEEE Xplore. Restrictions apply.

https://github.com/fxsjy/jieba
https://github.com/fxsjy/jieba
https://docs.jiguang.cn/en/jpush/guideline/intro/
https://docs.jiguang.cn/en/jpush/guideline/intro/
https://www.yuntongxun.com/
https://github.com/yanzhenjie/AndPermission
https://github.com/yanzhenjie/AndPermission
https://android.googlesource.com/platform/frameworks/base/+/78efbc95412b8efa9a44d573f5767ae927927d48
https://android.googlesource.com/platform/frameworks/base/+/78efbc95412b8efa9a44d573f5767ae927927d48
https://android.googlesource.com/platform/frameworks/base/+/78efbc95412b8efa9a44d573f5767ae927927d48
https://developer.android.com/studio/command-line/adb
https://developers.google.com/android/images#instructions
https://developers.google.com/android/images#instructions
https://source.android.com/setup/build/building
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://docs.oracle.com/javase/tutorial/deployment/jar/signing.html
https://docs.oracle.com/javase/tutorial/deployment/jar/signing.html
https://developer.android.google.cn/about/versions/10/privacy/changes#app-access-device-location
https://developer.android.google.cn/about/versions/10/privacy/changes#app-access-device-location
https://developer.android.google.cn/about/versions/10/privacy/changes#app-access-device-location
https://cs.android.com/android/platform/superproject/+/android-10.0.0_r30:packages/apps/PermissionController/src/com/android/packageinstaller/permission/model/AppPermissions.java
https://cs.android.com/android/platform/superproject/+/android-10.0.0_r30:packages/apps/PermissionController/src/com/android/packageinstaller/permission/model/AppPermissions.java
https://cs.android.com/android/platform/superproject/+/android-10.0.0_r30:packages/apps/PermissionController/src/com/android/packageinstaller/permission/model/AppPermissions.java
https://cs.android.com/android/platform/superproject/+/android-10.0.0_r30:packages/apps/PermissionController/src/com/android/packageinstaller/permission/model/AppPermissions.java
https://cs.android.com/android/platform/superproject/+/android-10.0.0_r30:packages/apps/PermissionController/src/com/android/packageinstaller/permission/utils/Utils.java
https://cs.android.com/android/platform/superproject/+/android-10.0.0_r30:packages/apps/PermissionController/src/com/android/packageinstaller/permission/utils/Utils.java
https://cs.android.com/android/platform/superproject/+/android-10.0.0_r30:packages/apps/PermissionController/src/com/android/packageinstaller/permission/utils/Utils.java
https://cs.android.com/android/platform/superproject/+/android-10.0.0_r30:packages/apps/PermissionController/src/com/android/packageinstaller/permission/utils/Utils.java
https://cs.android.com/android/platform/superproject/+/android-10.0.0_r30:packages/apps/PermissionController/src/com/android/packageinstaller/permission/utils/Utils.java
https://cs.android.com/android/platform/superproject/+/android-10.0.0_r30:frameworks/base/core/res/AndroidManifest.xml
https://cs.android.com/android/platform/superproject/+/android-10.0.0_r30:frameworks/base/core/res/AndroidManifest.xml
https://cs.android.com/android/platform/superproject/+/android-10.0.0_r30:frameworks/base/core/res/AndroidManifest.xml
https://android.googlesource.com/platform/frameworks/base/+/17eae45cf9a3948ed268e51bf13528ad82a465f0
https://android.googlesource.com/platform/frameworks/base/+/17eae45cf9a3948ed268e51bf13528ad82a465f0
https://android.googlesource.com/platform/frameworks/base/+/17eae45cf9a3948ed268e51bf13528ad82a465f0
https://android.googlesource.com/platform/frameworks/base/+/17eae45cf9a3948ed268e51bf13528ad82a465f0
https://android.googlesource.com/platform/frameworks/base/+/2a01ddbb4ea572ec82687dc0d9602eff36cc0886
https://android.googlesource.com/platform/frameworks/base/+/2a01ddbb4ea572ec82687dc0d9602eff36cc0886
https://android.googlesource.com/platform/frameworks/base/+/2a01ddbb4ea572ec82687dc0d9602eff36cc0886
https://android.googlesource.com/platform/frameworks/base/+/2a01ddbb4ea572ec82687dc0d9602eff36cc0886
https://android.googlesource.com/platform/frameworks/base/+/3aeea1f
https://android.googlesource.com/platform/frameworks/base/+/3aeea1f
https://android.googlesource.com/platform/frameworks/base/+/3aeea1f
https://commonsware.com/blog/2014/02/12/vulnerabilities-custom-permissions.html
https://commonsware.com/blog/2014/02/12/vulnerabilities-custom-permissions.html
https://issuetracker.google.com/issues/36941003

Zhou Li (Senior Member, IEEE) received the PhD
degree in computer science from Indiana Univer-
sity Bloomington, Bloomington, Indiana. He was a
principal research scientist with RSA Labs from
2014-2018. He is currently an assistant professor
with EECS Department, University of California,
Irvine. He has published more than 40 refereed
research articles. His research interests include
cyber security, privacy, andmachine learning.

Shishuai Yang received the BEng degree in soft-
ware engineering from Henan University, Kaifeng,
China, in 2020. He is currently working toward the
MEng degree at the School of Cyber Science and
Technology, ShandongUniversity, Qingdao, China.
His research interest includemobile security.

Shuang Li received the BSc degree in informa-
tion security from Shandong University, Qingdao,
China, in 2021. She is currently working toward
the MEng degree at the School of Cyber Science
and Technology, Shandong University, Qingdao,
China. Her research interests include mobile
security and software security.

Shanqing Guo received the PhD degree in com-
puter software from Nanjing University, Nanjing,
China, in 2006. He is currently a professor with the
School of Cyber Science and Technology, Shan-
dong University, Qingdao, China. His research
interests include software security, network secu-
rity, and AI security.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

4484 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on September 12,2023 at 10:25:48 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

