
Do App Developers Follow the Android Official
Security Guidelines?

– An Empirical Measurement on App Data Security

Abstract—The popularity of Android OS is largely credited
to massive apps, and many app developers are involved in
this ecosystem. On the other hand, various vulnerabilities are
introduced into apps by developers carelessly, bringing security
issues to users. To facilitate secure development and avoid
common API misuses, Google provides a series of security
guidelines and development practices for developers on the
official developer community websites. However, the deployments
of these guidelines in the wild have not been systematically
evaluated. In this work, through large-scale app measurement
(251,749 apps from 10 markets) and analysis, we investigated
whether app developers follow the official Android security
guidelines and the possible reasons behind it. In practice, we
selected five guidelines related to app data security as repre-
sentatives, covering: (1) secure file creation modes; (2) sensitive
data storage; (3) validation check for file paths; (4) hardware
ID usage; (5) custom permission protection. We also designed
the corresponding detection strategies to check violations of the
guidelines. The results show that most developers (> 90%) can
comply with Guidelines 1 and 2. However, some guidelines have
not been followed properly. For Guidelines 3, 4, and 5, less than
60% of developers followed the Google security suggestions.

I. INTRODUCTION

As the most popular mobile operating system, Android has
attracted an increasing number of developers to join the app
development community. The number of mobile developers
is expected to reach 27.7 million by 2023 [1]. Furthermore,
due to the support of the Android SDK and the official de-
velopment documentation, the number of apps in the Android
ecosystem has significantly increased. As of 2023, there are
2.87 million apps available on Google Play [12]. However, the
weak security awareness among developers has led to various
app security vulnerabilities, as they tend to prioritize app
functionality over security requirements [28]. Disturbingly,
recent data from the Atlas VPN team indicates that 63% of
Android apps contain known security vulnerabilities, averag-
ing 39 vulnerabilities per app [13].

To further improve the app security and avoid common API
misuses, Google proposes app security best practices in the
Android Developer Documentation to guide wide developers
[5]. These guidelines cover various aspects of app security,
such as data storage, communication, permission, and user
privacy. For example, the guidelines suggest developers should
only use the log functions to output debugging information,
not containing sensitive data. Though Google provides many
app security guidelines, their deployment in the wild have not
been systematically evaluated. The related essential research

questions have not been systematically answered, such as "Do
app developers comply with these guidelines? If not, what are
the corresponding reasons?"
Our Work. In this work, through large-scale app measurement
and analysis, we investigated guidelines’ deployment status
and possible reasons of guideline violations among developers.
On a high level, we need to select appropriate guidelines,
design & implement detection rules, analyze measurement
results, and evaluate the guidelines’ deployment status.

Google provides various app security guidelines, and we
cannot cover all of them due to page limitations. For large-
scale measurements, we select guidelines according to their
range of action. For example, the evaluation of the network
module needs to receive or send messages from the cloud
server. However, not all apps have this function. Data is an
integral part of every app, and the evaluation of data security
guidelines can cover more apps. Therefore, as representatives,
we mainly focus on the guidelines related to app data security.
We carefully reviewed the Android Developer Documentation
and extracted five guidelines for data security design. As listed
below, they can be divided into three categories: [data storage:
Guideline 1 and 2]; [data usage: Guideline 3 and 4]; [data
protection: Guideline 5]. More details are given in Section II.

Guideline 1: Use secure modes when creating files [24].
Guideline 2: Do not leak sensitive data on external storage
or in logs [16], [22], [21].
Guideline 3: Check the validity of file paths when reading
files [14], [9].
Guideline 4: Avoid using non-resettable hardware IDs [23].
Guideline 5: Exported components should be protected by
appropriate custom permissions [18], [7], [4].

To evaluate the deployment status of the above security
guidelines among Android app developers, we constructed the
corresponding lightweight detection rules. Further, we con-
ducted a large-scale measurement on 251,749 apps collected
from multiple app markets. The measurement results show
that most developers (> 90%) can comply with Guidelines 1
and 2, while the situations of other guidelines are not very
well. For Guidelines 3, 4, and 5, less than 60% of developers
followed them well. Furthermore, we combined multiple dy-
namic and static analysis methods to obtain possible reasons
of guideline violations, such as measurement results analysis,
manual reverse analysis, development simulation analysis, and
community resources analysis. By cross-validating the results

obtained by different analysis methods, we can infer the
possible reasons of guideline violation.

Though the specific reasons are different by guidelines, in
general, both Google (official developer documentation and
Android Studio – the official IDE) and app developers (code
development habits) should be responsible for the violation
of Guidelines 3, 4, 5. By analyzing the possible reasons of
guideline violations, developers can gain insight into potential
security issues and improvement directions during develop-
ment. Additionally, we provide suggestions for improving
guideline deployment to Google and app market maintainers.
Contributions. The main contributions of this paper are:

• Guideline deployment Evaluation. Based on 251,749 apps
collected from multiple app markets, we evaluated the
deployment status of data security guidelines in the wild.

• Guideline violations analysis. We systematically investi-
gated the possible reasons of guideline violations in apps,
which can help improve the deployments of guidelines.

II. ANDROID SECURITY AND GUIDELINES

In this section, we provide the necessary background of
Android OS security mechanisms and Google’s data security
guidelines for app developers.

A. Android Security Mechanisms

On Android, Google designs a series of security measures
to protect data, such as permission and sandbox mechanism.
App Sandbox. In Android, apps run in independent sand-
boxes. Each Android app runs in its own process, with its
independent memory space and private data [6]. The sandbox
can be treated as a safe execution environment for apps and
a restriction for malicious attackers. The implementation of
the sandbox mechanism is based on the Linux access control
mechanism, which utilizes user IDs to separate different app
processes. By default, apps cannot interact with each other,
and data access to other apps is restricted. The deployment
of the sandbox mechanism further clarifies the app’s security
boundary and minimizes the impact of malicious behaviors.
Permission. Android refines the access control mechanism
of Linux and uses a permission-based mechanism to protect
access to sensitive resources [15]. System permissions are
usually used to protect system resources. For example, if app
developers want to save files to external storage, developers
need to request the WRITE_EXTERNAL_STORAGE permission.
Otherwise, the system will prohibit developers from accessing
external storage. Android permissions are divided into three
levels [3]: (1) Normal: As long as the app applies for the
permission, it will be granted automatically. (2) Dangerous:
The app applies for and requires user authorization to use the
permission. (3) Signature: If the requesting app is signed
with the same certificate as the app declaring the permission,
it can be used.

B. Google’s Guidelines for App Data Security

In this study, we mainly focus on the deployment of data
security guidelines. The reason for selecting data security

guidelines will be explained in Section III-B. Here we summa-
rize Google’s guidelines and suggestions for app data security:

Guideline 1: Use secure modes when creating files [24].

⇒ App developers can select the file creation mode when
creating the SharedPreferences, database, and private files.
SharedPreferences is a lightweight storage class, mainly
used to store preference data (key-value pairs). Database files
are mainly used to store structured record information, and
private files are mainly used to store apps’ private data. Each
mode corresponds to a constant value. For example, MODE_
PRIVATE corresponds to 0x0000.

Insecure file modes will lead to data leakage. For example,
under MODE_WORLD_READABLE and MODE_WORLD_WRITEABLE,
the created files can be read and written by other apps without
any permission. These insecure modes are designed to share
files among apps, such as configuration files. Also, MODE_MUL
TI_PROCESS only can be used when creating SharedPreferen
ces files. This file mode is mainly designed to launch the
multi-process mode to improve operating efficiency and share
SharedPreferences among multiple processes. However, this
mode is not process-safe and may cause inconsistent reading
and writing of SharedPreferences files by multiple pro-
cesses. Currently, Google has provided more secure design
solutions to achieve the same functions and recommends not
using these insecure modes.

Guideline 2: Do not leak sensitive data on external storage
or in logs. [16] [22], [21].

⇒ The storage space of Android OS is divided into internal
storage and external storage. Internal storage is private to apps,
and external storage is shared between apps. Therefore, app
developers should store sensitive data on internal storage and
non-sensitive data on external storage. In addition, the log
function is designed to output some debugging information
at runtime, and developers may leak sensitive data related to
the app through logs. If malicious apps obtain the READ_LOGS
permission, they can read sensitive data leaked by other benign
apps through logs.

Guideline 3: Check the validity of file paths when reading
files [14], [9].

⇒ The file path validity means that when developers decom-
press files or use openFile method under ContentProvider
class for file sharing, they need to check whether the file path
contains a relative path represented by "..". If developers do
not check the file path validity, the app may be at risk of path
traversal vulnerability. In that case, the app may incorrectly
open a file indicated by the attacker or decompress the file to
the location specified by the attacker.

Guideline 4: Avoid using non-resettable hardware IDs [23].

⇒ There are four hardware identifiers in Android, includ-
ing IMEI (International Mobile Equipment Identity), Serial
Number, MAC Address, and SSAID (Android ID). The hardware
identifier is mainly used for device binding. These hardware

2

identifiers may be leaked to attackers through network trans-
mission, logs, etc. If the hardware identifier is leaked, it will
harm the user’s privacy, leading to the risk of device (user)
tracking.

Guideline 5: Exported components should be protected by
appropriate custom permissions [18], [7], [4].

⇒ In addition to system permissions, permissions also can be
defined by app developers, called custom permissions. They
are used to protect the data generated by apps and usually
act on the four major components of Android. Using custom
permissions can achieve data sharing between trusted apps and
prevent malicious apps from accessing data.

This guideline focuses on two aspects: (1) Android has
four major components: Activity, Service, Receiver, and
Provider. In order to make the four components accessible
to other third-party apps, developers can set components to
be exported. Further, developers can use the signature-level
custom permissions to protect these exported components. The
signature-level ensures the data is shared among trusted
apps. (2) Developers must follow the principle of least privi-
lege, apply the defined custom permissions to exported com-
ponents, and do not keep unused permissions in the manifest
files. If the developer does not follow the above guidelines, it
may leak the app’s sensitive data.

III. METHODOLOGY AND DATASET

To evaluate the proposed app data security guidelines, in
this section, we illustrate our measurement approaches and
app datasets.

A. Methodology

As illustrated in Figure 1, on a high level, our measurement
contains three main steps, as follows:

• Guidelines Selection. First, we reviewed the entire An-
droid security documentation to extract the suggestions
on app data security, as described in Section III-B.

• Dataset Construction. Next, we constructed the app
dataset used in the study, including ten popular third-
party app markets, as described in Section III-C.

• Measurement and Analysis. Finally, we evaluated the
deployment status of data security guidelines and inves-
tigated the possible reasons of guideline violation, as
described in Section III-D.

B. Guidelines Selection

Google’s guidelines on Android app security cover various
aspects, such as interaction, data, and network. All security
guidelines are crucial for developers to build secure apps,
but we can only cover a subset of guidelines in this paper
due to page limitations. When selecting guidelines from the
Android Security Documentation, we followed the principles
below: (1) Cover as many apps as possible. The guidelines we
choose should cover as many apps as possible to benefit more
developers and users. (2) Cover the whole lifecycle. The subset
of guidelines we choose should be related to each other and

cover the whole lifecycle of a certain module. For example,
the lifecycle of the network module includes message sending,
receiving, and processing.

Considering the above two requirements, we prioritize
showing data security guidelines after reviewing all guidelines.
Mainly because (1) data is an integral part of every app. The
evaluation of data security guidelines can cover more apps
and benefit more developers and users. The action ranges
of some modules are limited. For evaluating network-related
guidelines, the app may be required to send or receive some
messages to the cloud server. Still, not all apps have the
function of network communication. (2) There is a strong
correlation among our chosen guidelines covering data use,
storage, and protection. These guidelines cover the whole life-
cycle of data-related operations. In addition, there is currently
no comprehensive study on official guideline-based Android
app data security, and we fill the gaps in this research area.

Note that some security guidelines focus on relevant de-
velopment aspects. For better demonstration, we aggregated
multiple practices/suggestions into one guideline. After aggre-
gation, we obtained five data security guidelines, as shown in
Section II-B.

C. Dataset Construction

Since Google Play did not provide the app bulk download-
ing APIs anymore, the app dataset was constructed based on
multiple third-party app markets for universality. Regardless of
whether developers belong to Google Play or the third-party
app market, they should all follow the data security guidelines
to improve the security of apps. We selected ten popular third-
party app markets to crawl apps, including F-Droid, 9apps,
360, 2265, Anzhi, LapTopPCAPK, Lenovo, Leyou, Mdpda,
and Uptodown. Since app developers may upload apps to
multiple app markets, we calculated the MD5 value of each
app to ensure the uniqueness of apps in the dataset. After
deduplication, a total of 251,749 apps were obtained.

D. Measurement and Analysis

After extracting the data security guidelines, we imple-
mented all the development behaviors described by the guide-
lines, taking into account the different implementations of
these guidelines in apps, especially for guideline violation.
According to the implementation form of the guidelines in
apps, we heuristically constructed detection rules for each
guideline and performed large-scale measurements on the apps
in our dataset. To make the measurement results more accurate,
we did not evaluate the compliance of some official libraries to
these guidelines. These official libraries are usually supporting
libraries that keep apps running, and their package names usu-
ally start with com.google.⁎, com.android.⁎, androidx.⁎,
and android.⁎. After that, we conducted a multi-dimensional
analysis of the measurement results to evaluate the deployment
of data security guidelines proposed by Google.

After obtaining the measurement results, we focused on
analyzing the possible reasons of guideline violation. Our
violation reason analysis follows the following process:

3

 APK Dataset APK Filtering APK Reverse
& Analysis

 Rules Checking
 in Apps

Deployment
 Evaluation

 Detection Rules
Construction

 Documents
Review

Guidelines
Extraction

...

Fig. 1: Workflow of our measurement.

• Measurement results analysis: Based on our measurement
results of each guideline, we can directly infer the possi-
ble reasons of guideline violation.

• Manual revere analysis: We unpacked the apps violating
this guideline and analyzed the code. In practice, we
focused on the apps that violated this guideline multiple
times, the apps in different categories and versions.

• Development simulation analysis: We developed a demo
app to re-produce the process of misuse and analyzed the
possible reasons of guideline violation.

• Community resources analysis: Developers usually learn
the use of API from some third-party Q&A websites,
so we checked some online Q&A sites (such as Stack
Overflow) to find hints of guideline violation.

IV. MEASUREMENT AND FINDINGS

In this section, we present our empirical research methods
and results on the app data security guidelines described in
Section II-B.

¬ Guideline 1: Use secure modes when creating files.

To this guideline, we mainly focus on the file mode devel-
opers use when creating files. In detection, we extracted the
integer value corresponding to the file mode by identifying the
API that creates SharedPreferences, database, and private
files. After that, the extracted values will be converted to file
modes for further analysis.
Usage of Secure File Modes. We counted the usage times
of different file modes for creating SharedPreferences,
database, and private files in 251,749 apps, as shown in
Table I. The corresponding percentages of creating files in
secure modes are 94.01% (7,309,686), 97.93% (54,233), and
86.19% (341,287), respectively.
Usage of Insecure File Modes. There are mainly three risky
file mode usage cases:
(1) Incorrect usage of a single file mode. The incorrect usage
of a single mode indicates that the developers use the mode
marked insecure in Table I. The proportions of such errors used
in SharedPreferences, database, and private files are 4.73%
(367,751), 0.95% (527), and 10.7% (42,353), respectively.
(2) Incorrect usage of file mode combinations. Android allows
the assigned file mode can be a combination of multiple
modes. It will be more harmful if the combination includes
multiple insecure modes. For example, [MODE_WORLD_READABL

E + MODE_WORLD_WRITEABLE] can grant other apps read and
write permissions to the file. In our measurement, The pro-
portions of insecure combinations are 0.57% (43,962), 0.03%
(19), and 3.07% (12,142), respectively.
(3) Usage of unsupported file modes. Some developers used
unsupported modes to create files. For example, SharedPrefe
rences files only support four modes – MODE_PRIVATE, MODE_
WORLD_READABLE, MODE_WORLD_WRITEABLE, and MODE_MULTI_
PROCESS. However, some developers specify other modes such
as MODE_APPEND or some unknown types of integer values.
That is, these developers may be confused about the modes
supported by each type of file. Also, some developers even do
not know that the file mode is a fixed constant value, and they
fill in an integer value casually. The proportions of this error
used in the above three kinds of files are 0.69% (53,690),
1.09% (601), and 0.05% (195). After testing, we find that
the files created with unsupported modes will be treated as
MODE_PRIVATE. However, there are no security guarantees, i.e.,
with later versions of Android, file permissions created with
unsupported modes can become dangerous, such as becoming
world readable and writable.

1 private void addImageAttachment(String
fileName , Bitmap bitmap) {

2 FileOutputStream fileOutputStream = null;
3 if (fileName != null && bitmap != null) {
4 try { fileOutputStream = this.mContext.

openFileOutput(fileName , 1);
5 bitmap.compress(Bitmap.CompressFormat.

PNG , 25, fileOutputStream);
6 Uri fileUri = Uri.fromFile(new File(

this.mContext.getFilesDir () + File
.separator + fileName));

7 this.mEmailAttachments.add(fileUri);}
8 ...}}

Listing 1: Example of file sharing.

The possible reason why developers use insecure file mode
is to achieve file sharing between apps. If the file is not set
to MODE_WORLD_READABLE, the shared apps cannot obtain the
shared content. For example, the app Monster1 shares the
image to mail app as an attachment of the mail, as shown
in Listing 1. In this case, Monster specifies that the image is
stored in the internal storage and sets the file mode to MODE_
WORLD_READABLE through the openFileOutput method. Then,

1Package name: nyanko.monster

4

TABLE I: Configured file modes when creating files.

Mode Value Security SharedPreferences Database Private File
MODE_PRIVATE 0x0000 Secure 7,309,686 54,206 321,125
MODE_WORLD_READABLE 0x0001 Insecure 53,612 319 40,302
MODE_WORLD_WRITEABLE 0x0002 Insecure 21,825 208 2,051
MODE_MULTI_PROCESS 0x0004 Insecure 292,314 N/A∗ N/A
MODE_ENABLE_WRITE_AHEAD_LOGGING 0x0008 Secure N/A 6 N/A
MODE_NO_LOCALIZED_COLLATORS 0x0010 Secure N/A 21 N/A
MODE_APPEND 0x8000 Secure N/A N/A 20,162
MODE_INSECURE_COMBINATION† Multiple⋄ Insecure 43,962 19 12,142
MODE_ERROR_USE‡ Multiple Insecure 53,690 601 195

∗: N/A represents the file does not support this mode.
†: MODE_INSECURE_COMBINATION represents a combination of unsafe file creation modes, such as MODE_WORLD_READABLE + MODE_WORLD_WRITEABLE.
‡: MODE_ERROR_USE represents a wrong mode is used to create the file.
⋄: Multiple represents multiple values in this mode.

it will convert the image to an insecure file:/// Uri via the
fromFile method. File Uri access control needs to open the
underlying file system permissions, and the open permissions
will be available to any apps until the next close.

Note that when creating database files, developers used the
secure mode at the highest percentage. Unlike other types
of files, database files are usually structured data, consisting
of tables and records. Since using MODE_WORLD_WRITEABLE
and MODE_WORLD_READABLE (insecure mode) can only share
the entire database, developers are more inclined to use
ContentProvider to achieve fine-grained access control.

Our Assessment: Most developers create files using secure
modes, but some use insecure file modes to implement the
file-sharing function.

¬ Guideline 2: Do not leak sensitive data on external
storage or in logs.

To this guideline, we mainly focus on whether developers
leak some sensitive data on external storage or in logs.
Leakage on External Storage. We extracted the filenames
on external and internal storage according to the file storage
paths in the apps. To characterize how developers use the
external storage, we performed a word frequency analysis
on the filenames extracted from external storage. Also, third-
party libraries usually create files to save some information.
To exclude the influence of filenames generated by third-party
libraries on the frequency of hot words, we save each filename
into a collection for deduplication. In addition, we removed
some meaningless words, such as "android" and "app".

The word frequency analysis results show that devel-
opers mainly use external storage to save pictures (such
as "photo", "image", "camera", "picture"), videos (such as
"video", "audio"), and other media data. We also compared
whether there is an overlap between external and internal
storage hot words. The result shows that 93 of the top 200
hot words on internal and external storage are the same. It
means that developers cannot clearly distinguish whether some
types of files should be stored on internal or external storage.
As a result, external storage may contain sensitive data. For
example, "log" is a hot word for both internal and external

storage, and logs should be stored on internal storage. The
log saves various information outputs by apps at runtime,
which may contain sensitive data. However, many developers
believe that log information is not critical and store it on
external storage. In addition, the external storage also leaks
the following sensitive data: Database, Contact, Plugin, QR
Code, Screenshot and so on.
Leakage in App Logs. In this part, we adopted MobiLogLeak
[37] to analyze the sensitive data leaked through app logs.
MobiLogLeak is a taint analysis-based tool that classifies
sensitive information into four categories: network, account,
location, and database. For example, the app OSRSHelper2

leaks the account and username through the following log:

DBController: getAccountByUsername: account=
com.infonuascape.osrshelper.models.Account@b95a6be
username=Alice

Also, the path-sensitive data flow analysis often leads to
the path explosion problem, causing overhead. Considering our
server’s performance and running time, we only performed log
leak analysis for apps less than 10 MB. There are 95,963 apps
left in our dataset, which is still considerable and can reflect
general statistical characteristics. In addition, we improved
MobiLogLeak with the support of multi-process analysis for
large-scale measurements.

Based on our statistics, 4,473 apps (4.66%) leaked sensitive
data in their logs, for a total of 24,187 leaks. It is worth
noting that our measurements are only a lower bound on actual
leakage. When considering large-size apps, the leak may be
more severe since they integrate more functions and add more
logs for debugging. The usage times and ratios of different
log levels for leaking sensitive data are listed in Table II. It
shows that most developers prefer to use the Info and Debug
levels to output logs. In addition, many leakages appear in the
Warn and Error levels, which is also an alarming development
practice. Warn is mainly to remind the developers that there
may be potential risks, and Error is primarily used to print the
error information of the app. Leaking sensitive data in logs is
mainly for debugging purposes, so Verbose, Debug, and Info

2Package name: com.infonuascape.osrshelper

5

TABLE II: Log levels configured in apps.

Log Level Verbose Debug Info Warning Error
Amount 1,209 10,213 7,159 2,682 2,924

Percentage 5.00% 42.22% 29.60% 11.09% 12.09%

levels should be used instead of Warn and Error levels. In
our measurement, there are mainly two types of data leakage
– network and database, of which proportions are 77.07%
(18,641) and 22.93% (5,546), respectively. Most network-
related leaks are the data about hardware identifiers, consistent
with the heavy use of hardware identifiers we measured in
Guideline 4. The database is mainly the leakage of some field
information in database tables.

The possible reason for sensitive data leakage is that the
developers want to confirm that the return value of the function
or the value of the field is the expected result. For example,
the app SunstarHealth3 outputs the returned IMEI value into
log to judge whether the call to getDeviceId() is successful,
resulting in the leakage of IMEI. As stated in Guideline 4, it
will cause privacy issues such as user tracking. The secondary
reason is that developers may debug multiple times and not
delete log information immediately after each debug. Also,
many developers do not know how to automatically remove
logs in apps [17]. There may be thousands of source files for
the current Android app project, and only manually deleting
the log will cause much time overhead. Further, the developers
lack security awareness and do not remove the log in apps.

Our Assessment: App developers may not distinguish sen-
sitive data well, and such data appears on external storage.
In addition, though the leakage in app logs is not very
common (< 5%), the leaked data is vital, usually relating to
hardware identifiers and databases.

¬ Guideline 3: Check the validity of file paths when reading
files.

This guideline mainly focuses on whether developers have
checked the validity of file paths when reading files, and the
file path should not contain relative paths.

As mentioned in Section II-B, when developers decompress
files or use the openFile method for file sharing, they need
to check file path. In our dataset, around 28.12% (70,792)
apps decompress files with 130,442 decompression operations.
Among them, 78.01% of operations (101,755) are vulner-
able, and most developers did not sterilize the file paths.
Decompressing a zip compressed package has a relatively
standard process: (1) Convert the compressed package to an
input stream, and further convert it to a ZipInputStream. (2)
Traverse each file in the compressed package and specify the
decompression location of the file. (3) Convert each file to an
output stream and extract it to the destination directory. This
process may be a bit complicated for inexperienced developers,
and the Android official documentation does not provide a
concrete example to guide developers.

3Package name: com.cinvision.sunstarhealth

On another aspect, only 10.62% (26,725) apps override
the openFile method under ContentProvider class for file
sharing. Such a low ratio is a good phenomenon because if the
openFile method is overridden in apps without filtering the
file path, the apps will be exposed to the risk of path traver-
sal vulnerabilities. The reason developers rarely override the
openFile method is probably because it is more complicated
to implement file sharing through the openFile method. As
mentioned in Guideline 1, developers only need to specify the
file creation mode to achieve (insecure) file sharing. A total
of 30,485 openFile methods are overridden in 26,725 apps,
of which only 17.85% (5,443) sterilize file paths.

In the above two path traversal vulnerabilities, only a small
number of developers actively sterilize file paths. The possible
reason may be the misleading of incorrect online code exam-
ples. We find that the Android official documentation does not
provide concrete code examples to check file path validity.
Facing the lack of official guidance, an empirical survey by
Zhang et al. [36] shows that developers often learn the use of
new APIs through online Q&A forums such as Stack Overflow
and often suffer from API misuse issues. To investigate this
issue, we reviewed the top answers on Stack Overflow about
file unzipping and file sharing using openFile method [25]
[20]. The result shows that none answers sterilize the file
paths, and developers may directly reference these incorrect
code snippets into their apps to quickly fulfill the business
requirements of the apps.

Our Assessment: Only a small fraction of developers check
the validity of the file paths when reading files, and Google
should provide concrete API usage examples for reference
to avoid path traversal vulnerabilities.

¬ Guideline 4: Avoid using non-resettable hardware IDs.

This guideline mainly focuses on whether developers use
non-resettable hardware identifiers, such as IMEI (International
Mobile Equipment Identity), Serial Number, MAC Address,
and SSAID (Android ID). We mainly analyzed the usage
times of hardware identifiers in apps by parsing all the APIs
for obtaining hardware identifiers. Then, we also got app’s
targetSdkVersion to analyze the average usage of hardware
identifiers in different targetSdkVersion.
Overall Statistics. In our app dataset, 173,572 apps (68.95%)
used at least one hardware identifier. We counted the total
number of the four hardware identifiers, as listed in Table III.
We can find that developers are more inclined to use IMEI
than the other three identifiers. It is mainly because IMEI
exists in every version of Android and has been added since
API Level 1. In addition, it is more stable and easier to
obtain than other identifiers. SSAID can be easily changed
on a rooted device, and the MAC Address is only available
after connecting to the Internet. Although Serial Number is
relatively stable and not easy to be changed, it is used far
less than the other three hardware identifiers. The possible
reason is that the Build.Serial API is not available in all
Android phones, and it was added at API Level 9. Also, the

6

TABLE III: Total usage of hardware identifiers.

Identifier IMEI S/N MAC Addr SSAID
Amount 1,650,153 191,064 768,581 747,133

value returned by Build.Serial may be inconsistent with
the value listed in the Settings of the mobile phone [2]
[10]. That is to say, the actual Serial Number cannot be
acquired through the Build.Serial API. Therefore, many
developers use Java reflection to access non-SDK APIs to
read the Android.os.SystemProperties configuration file
for obtaining the actual Serial Number. Non-SDK APIs have
no compatibility guarantee and may be removed from the
Android framework at any time, causing runtime crashes in
apps [19]. Therefore, the usage of Serial Number is not
common, and the total number of uses is far lower than the
other three hardware identifiers.

1 public void getDetailMsg () {
2 this.params = new HttpParams ();
3 UserEntity user = Find_User_Company_Utils.

FindUser ();
4 PostUtil.postDefultStr(this.params , System

.currentTimeMillis () + "", "", this.
mActivity);

5 this.params.put("markAddress",
GetUniqueAndroidKeyUtil.getDeviceId(
App.getInstance ().
getApplicationContext ()));

6 this.params.put("companyid", user.
getCompanyid ());

7 this.params.put("userid", user.getUserid ()
);

8 Core.getKJHttp ().post(App.siteUrl + "
appAttendance/attendanceIndex_new.
action?n=" + Math.random (), this.
params , this.getBack); }

Listing 2: Example of device binding using IMEI.

App developers mainly use hardware identifiers to bind
the app to the device (user) for unique identification. For
example, the app QuanFangTong4 identifies a user by binding
userid and IMEI (obtained through getDeviceId method) for
achieving the function of employee clocking in, as shown in
Listing 2. However, since the hardware identifier is usually
associated with the device user, it may harm the user’s privacy.
Device tracking can be performed when a malicious attacker
obtains the victim’s hardware identifier.
Hardware IDs Migration. Note that, due to Google’s re-
striction, if the apps with targetSdkVersion ≥ 29, obtaining
some hardware identifiers in apps will involve a compatibility
problem. For example, third-party apps cannot obtain the
IMEI and Serial Number. If they are queried in code, a
SecurityException will be thrown. For MAC Address, the
Android OS will generate a random address for each query,
which cannot uniquely identify the device [8]. To the apps
with targetSdkVersion ≥ 29, the average usage times of
the preceding hardware identifiers are decreasing gradually, as

4Package name: net.quanfangtong.hosting

≤29 29 31 3230
TargetSdkVersion

0

1

2

3

4

5

6

7

A
ve

ra
ge

 U
sa

ge

6.78

4.86
4.49

3.54

3.05

0.78 0.65

0.15

0.96

0.38

2.18 2.28

1.70

1.24

IMEI
Serial Number
Mac Address
SSAID

3.02

3.28

0.63

0.53

0.38

0.32

Fig. 2: Used hardware identifiers by targetSdkVersion.

plotted in Figure 2. Especially for IMEI and MAC Address,
because they have too many average references in apps before
targetSdkVersion < 29, a cliff-like drop occurred when
targetSdkVersion = 29.

Our Assessment: Using non-resettable hardware IDs may
lead to the risk of device tracking. In practice, many app
developers still use hardware identifiers for the device (user)
binding and identification. This problem is gradually easing
with the API restriction of Google after API Level 29.

¬ Guideline 5: Exported components should be protected
by appropriate custom permissions.

This guideline mainly focuses on the exportation of app
components and the usage of custom permissions for pro-
tecting exported components. We mainly analyzed apps’
AndroidManifest.xml files, and parsed all the four compo-
nents defined and exported, as well as the custom permissions
defined and unused.
Exported Components. Among the 251,749 apps, 230,201
apps (91.44%) have at least one exported Activity (the
default export of MainActivity has been excluded). For
Service, Receiver, and Provider, the percentages are
53.98%, 61.99%, and 20.58%, respectively. Activity exports
are common in apps because developers need to use third-
party SDKs to receive callback results from third-party apps.
To receive the returned results correctly, third-party apps must
be able to access the Activity in the developer’s app to pass
the callback result, so the Activity must be exported. For
example, 52,187 apps in our dataset integrate the WeChat
payment SDK, and these apps need to receive the returned
results (success or failure) of payment after initiating new
WeChat payment requests.

Also, as plotted in Figure 3, the total export percentages
of all four major components in apps are 9.25%, 28.43%,
56.28%, and 15.33%. That is, the export rate of Activity is
relatively low. After investigation, It is likely due to the default

7

ServiceActivity Receiver Provider

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1e6
1444994

941597

481469
410771

529965

7382882388
12454

88947
17493

Total Component

10621056

982523

Exported Component

Protected Component

Fig. 3: Statistics of major components used in apps.

attribute configurations of Android Studio. Android Studio will
set them exportable by default when developers create the
Service, Receiver, and Provider components. However, to
Activity, the default attribute is unexportable. The exported
components may lead to the risks of information leakage,
phishing, and denial of service [11]. For example, suppose
the exported Activity does not handle exceptions to the data
obtained by Intent.getXXXExtra(). In that case, an attacker
can crash the app by sending empty, abnormal, or malformed
data.
Protected Components. On the other hand, only 1.27% of
exported Activity are protected by custom permissions. The
percentages of Service, Receiver, and Provider being pro-
tected are higher than that of Activity, say 20.06%, 16.78%,
and 23.69% respectively. The reason is that, after using the
third-party SDK, the Activity that receives the callback result
usually does not set any permissions to ensure this Activity’s
accessibility.

We extracted the protection levels of custom permissions for
protecting the four major components, as shown in Figure 4.
As suggested by Guideline 5, the protection level should be
signature or signatureOrSystem5. According to our statis-
tics, most configurations are correct, say Activity: 92.61%,
Service: 86.54%, Receiver: 94.33%, and Provider: 96.52%.
A few developers use normal-level permissions to protect
components, which is insecure. A normal-level permission
can be obtained by any app. The reason is mainly due to
the default parameters of the protectionLevel attribute of
the <permission> element. If developers do not explicitly
specify the protection levels of defined custom permissions,
the default level will be assigned as normal. Developers may
believe that the default protection level is secure to protect
components. Also, some developers use dangerous-level
custom permissions to protect components, which is also not

5In most cases, signature and signatureOrSystem are equivalent.

5.78%

1.61%

54.89%

37.72%

(a) Activity

12.52%

0.95%

64.15%

22.39%

(b) Service

3.76%

1.90%

37.53%
56.80%

(c) Receiver

3.32%

0.17%

65.52%

31.00%

(d) Provider

normal
dangerous
signature
signatureOrSystem

Fig. 4: Protection levels of custom permissions.

recommended by Google. Creating dangerous-level permis-
sions will introduce user decisions, and users may not have
enough security knowledge to make appropriate decisions.

For ContentProvider, Google has implemented fine-
grained permission control, dividing it into read-only or
write-only permissions. 50.28% (8795/17493) usage cases
apply read-only permission to ContentProvider, and 14.51%
(2539/17493) usage cases apply write-only permission. How-
ever, 35.21% (6159/17493) usage cases still do not implement
this find-grained protection, and apps are granted both read and
write permissions, although most apps may only need write
or read permissions.
Custom Permission Usage. For custom permissions, 12,492
apps (4.96%) exist the over privilege issue. That is, permission
is defined without use. The possible reasons include:

1 <permission android:name="baidu.push.
permission.WRITE_PUSHINFOPROVIDER.com.
wzm.moviepic" android:protectionLevel="
signature"/>

2 <provider android:name="com.baidu.android.
pushservice.PushInfoProvider"

3 android:writePermission="baidu.push.
permission.WRITE_PUSHINFOPROVIDER.com.
wzm.moviepic " android:protectionLevel="
signature" android:exported="true" />

Listing 3: Example of inconsistent permission names.

(1) The developer did not check whether the defined custom
permissions are consistent with the custom permissions ap-
plied to the component, which means there is a spelling error.
In addition, some spelling mistakes are so tiny that it is difficult
to notice. For example, as shown in Listing 3, the app Shouhui
Movie6 defines a permission7 to protect its Provider compo-
nent. Note that the permission protection level is signature,
and other apps with different certificates with Shouhui Movie

6Package name: com.shouhui.moviesdy
7baidu.push.permission.WRITE_PUSHINFOPROVIDER.com.wzm.moviepic

8

cannot access this Provider. However, the developer entered
an extra space at the end of the permission name carelessly.
As a result, from the system’s view, the misspelled permission
applied to the component above has not been defined. A
malicious app can declare the above-misspelled permission
name and set its protection level to normal, thereby gaining
access to the exported component.
(2) The developer forgot to delete the unused custom per-
missions in time in new versions. For example, the app
Tencent Map8 defined a custom permission9 protected com-
ponent RadioMapProvider10 in version 5.0.1. This Provider
component was deleted in later versions, but the corresponding
custom permission declaration was not removed.

Our Assessment: The app component export operations are
widespread. Only a small part of the exported components
are protected by custom permissions. Among these use
cases, most developers can set the protection levels of
custom permissions correctly.

V. DISCUSSIONS

A. Threats to Validity

Some of the threats to validity of this study are discussed
in this section.
Static code analysis. In our analysis, we decompiled apps
mainly using AndroGuard, a Python-based static analysis tool.
Since static analysis does not execute code, some identified
behaviors (compliance and violation of guidelines) may not
be triggered in apps at runtime. On the other hand, dynamic
analysis is unsuitable for large-scale measurements due to its
analysis efficiency and code coverage issues.
False negative results. For each guideline compliance and
violation, developers may have diverse implementations. Al-
though we have considered most implementation cases, there
are inevitably omissions. Even so, we measured 251,749 apps,
and the guidelines compliance and violations extracted from
such a large number of apps reflect the overall characteristics.
Violation reasons analysis. We utilized various methods to an-
alyze the possible reasons for guideline violations. To validate
our analysis and obtain the actual reasons for guideline viola-
tions, we need to conduct large-scale app developer studies. As
part of this work, we sent out 500 E-mails to app developers
for reason confirmations. Unfortunately, we received only 13
responses, so we did not present app developer studies results
in this work.

B. Lessons Learned

The reasons for the low adoption rates of Guidelines 3,
4, and 5 are different. The goal of developers is to rapidly
implement the functionalities of apps, enabling them to be
released quickly to capture market share. Developers will
likely continue to make these mistakes unless they receive
proper education on these security issues. To increase the

8Package name: com.tencent.map
9tencentmap.provider.permission
10com.tencent.navsns.radio.provider.RadioMapProvider

adoption rate of these guidelines, we suggest starting with
Google and app market maintainers. They can adopt the
following suggestions:
(1) It would be beneficial for Google to provide developers
with concrete code examples that demonstrate the imple-
mentation of complex development operations. By offering
practical examples, developers can better understand how to
apply the guidelines in their apps smoothly. In addition, adopt-
ing a security-by-default design approach for Android Studio
can significantly contribute to the improved adoption rate
of the guidelines. This means implementing default security
measures within the development environment itself, such
as enforcing secure coding practices and providing built-in
security features.
(2) App marketplace maintainers should design corresponding
automated detection tools based on the security guidelines pro-
vided by Google and integrate them into the app marketplace’s
review process to prevent the release of apps that violate the
security guidelines.

VI. RELATED WORK

Some previous works focus on the topics of API misuse
and developer behaviors. Here we review these works.
API Misuse. Egele et al. [27] evaluated the cryptographic
APIs used in Android and found that 10,327 of 11,748 apps
had at least one cryptographic misuse based on CryptoLint.
Diao et al. [26] analyzed the Android accessibility APIs
framework. They found that the accessibility APIs are widely
misused, and developers use the accessibility APIs to bypass
the permission restrictions of the Android OS. Shao et al.
[33] proposed SInpector to check for potential misuse of Unix
domain sockets in apps and system daemons. A total of 14,644
apps and 60 system daemons were analyzed, and 45 apps and
9 system daemons were found to be vulnerable. Oltrogge et
al. [32] analyzed the use of Network Security Configuration
(NSC) in Android, and 88.87% of apps misused NSC to
cause security degradation. Luo et al. [31] proposed the MAD-
API framework to detect API misuse problems in apps with
the evolution of Android APIs. They found that 93.13% of
the evaluated apps had API misuse problems, and the total
number of misuses reached 1,241,831. Li et al. [30] present
ARBITRAR, which detects API misuses by interacting with
users. They checked the usage of 18 target API methods in 21
C++ programs and discovered 40 bugs.
Developer Behaviors. Li et al. [30] surveyed the posts on
StackOverflow and found the classes that frequently caused
usage obstacles but not frequently used, and also revealed
some causes of API usage barriers. Zhang et al. [36] found
that developers may learn new API usage from online Q&A
sites. They analyzed 217,818 StackOverflow posts using Ex-
ampleCheck and found that 31% posts may have potential API
usage violations. Li et al. [29] found that most of the depre-
cated APIs are accessed by apps through popular libraries,
and library developers are more likely than app developers to
update deprecated APIs. Linares-Vásquez et al. [34] analyzed
the factors affecting the success of Android apps, measuring

9

7,097 Android apps, and found that heavy use of fault- and
change-prone APIs negatively affected the success of these
apps. In another direction, Linares-Vásquez et al. [35] studied
the developers’ responses to API changes. When API behavior
is modified, Android developers usually have more questions
and triggered more discussions on StackOverflow.

Unlike the above research, in this paper, from the per-
spective of Google’s app security development guidelines, we
evaluate the deployment status of data security guidelines. To
the best of our knowledge, we are the first to conduct an
evaluation of the security guidelines provided by Google.

VII. CONCLUSION

In this paper, we evaluated whether app developers followed
the Android official security guidelines and investigated the
reasons behind the results. Taking the app data security as the
case study, we evaluated five development guidelines for data
security design. The high-level result shows that developers
did not follow three of these five guidelines well. The possible
reasons of guideline violations come from both parties, Google
and app developers.

REFERENCES

[1] (2023) Android Developer Salary - For Freshers and Experienced.
[Online]. Available: https://www.simplilearn.com/tutorials/software-car
eer-resources/android-developer-salary

[2] (2023) Android Get Serial Number. [Online]. Available: https:
//stackoverflow.com/questions/33079734/android-get-serial-number

[3] (2023) Android Permission Protection Level. [Online]. Available:
https://developer.android.com/guide/topics/manifest/permission-element

[4] (2023) android:exported. [Online]. Available: https://developer.android.
com/topic/security/risks/android-exported

[5] (2023) App Security Best Practices. [Online]. Available: https:
//developer.android.com/topic/security/best-practices

[6] (2023) Application Sandbox. [Online]. Available: https://source.android
.com/security/app-sandbox

[7] (2023) Apply Signature-Based Permissions. [Online]. Available:
https://developer.android.com/topic/security/best-practices#apply-signa
ture-based-permissions

[8] (2023) Best Practices Android Identifier. [Online]. Available: https:
//developer.android.com/training/articles/user-data-ids#best-practices-a
ndroid-identifiers

[9] (2023) Fixing a Zip Path Traversal Vulnerability. [Online]. Available:
https://developer.android.com/topic/security/risks/zip-path-traversal

[10] (2023) How to Decode Android Os.Build.Serial? [Online]. Available:
https://stackoverflow.com/questions/11794749/how-to-decode-android
-os-build-serial

[11] (2023) Improper Export of Android Application Components. [Online].
Available: https://cwe.mitre.org/data/definitions/926.html

[12] (2023) Mobile App Download Statistics & Usage Statistics (2023).
[Online]. Available: https://buildfire.com/app-statistics/

[13] (2023) Over 60% of Android Apps Have Security Vulnerabilities.
[Online]. Available: https://atlasvpn.com/blog/over-60-of-android-app
s-have-security-vulnerabilities

[14] (2023) Path Traversal Vulnerability. [Online]. Available: https:
//developer.android.com/topic/security/risks/path-traversal

[15] (2023) Permissions on Android. [Online]. Available: https://developer.
android.com/guide/topics/permissions/overview

[16] (2023) Privacy & Security SC-DF2. [Online]. Available: https://develo
per.android.com/docs/quality-guidelines/core-app-quality#SC-10

[17] (2023) Remove Debug Logging. [Online]. Available: https://stackoverf
low.com/questions/2446248/how-to-remove-all-debug-logging-calls-b
efore-building-the-release-version-of-an

[18] (2023) Request Permissions. [Online]. Available: https://developer.andr
oid.com/training/articles/security-tips#RequestingPermissions

[19] (2023) Restrictions on non-SDK interfaces. [Online]. Available:
https://developer.android.com/guide/app-compatibility/restrictions-non
-sdk-interfaces

[20] (2023) Share File. [Online]. Available: https://stackoverflow.com/questi
ons/12170386/create-and-share-a-file-from-internal-storage

[21] (2023) Store Data in External Storage Based on Use Case. [Online].
Available: https://developer.android.com/topic/security/best-practices#e
xternal-storage

[22] (2023) Store Private Data Within Internal Storage. [Online]. Available:
https://developer.android.com/topic/security/best-practices#internal-sto
rage

[23] (2023) Use Resettable Identifiers. [Online]. Available: https://develope
r.android.com/docs/quality-guidelines/core-app-quality#sc

[24] (2023) Use SharedPreferences in Private Mode. [Online]. Available:
https://developer.android.com/topic/security/best-practices#sharedprefe
rences

[25] (2023) Uzip File. [Online]. Available: https://stackoverflow.com/questi
ons/3382996/how-to-unzip-files-programmatically-in-android

[26] W. Diao, Y. Zhang, L. Zhang, Z. Li, F. Xu, X. Pan, X. Liu, J. Weng,
K. Zhang, and X. Wang, “Kindness is a Risky Business: On the
Usage of the Accessibility APIs in Android,” in Proceedings of the
22nd International Symposium on Research in Attacks, Intrusions and
Defenses (RAID), Beijing, China, September 23-25, 2019, 2019.

[27] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An Em-
pirical Study of Cryptographic Misuse in Android Applications,” in
Proceedings of the 20th ACM SIGSAC Conference on Computer and
Communications Security (CCS), Berlin, Germany, November 4-8, 2013,
2013.

[28] J. Gao, L. Li, P. Kong, T. F. Bissyandé, and J. Klein, “Understanding
the Evolution of Android App Vulnerabilities,” IEEE Transactions on
Reliability, vol. 70, no. 1, pp. 212–230, 2021.

[29] L. Li, J. Gao, T. F. Bissyandé, L. Ma, X. Xia, and J. Klein, “CDA: Char-
acterising Deprecated Android APIs,” Empirical Software Engineering,
vol. 25, no. 3, pp. 2058–2098, 2020.

[30] Z. Li, A. Machiry, B. Chen, M. Naik, K. Wang, and L. Song, “ARBI-
TRAR: User-Guided API Misuse Detection,” in Proceedings of the 42nd
IEEE Symposium on Security and Privacy (IEEE S&P), San Francisco,
CA, USA, 24-27 May 2021, 2021.

[31] T. Luo, J. Wu, M. Yang, S. Zhao, Y. Wu, and Y. Wang, “MAD-API:
Detection, Correction and Explanation of API Misuses in Distributed
Android Applications,” in Proceedings of the 7th International Confer-
ence on Artificial Intelligence and Mobile Services (AIMS), Seattle, WA,
USA, June 25-30, 2018, 2018.

[32] M. Oltrogge, N. Huaman, S. Amft, Y. Acar, M. Backes, and S. Fahl,
“Why Eve and Mallory Still Love Android: Revisiting TLS (In)Security
in Android Applications,” in Proceedings of the 30th USENIX Security
Symposium (USENIX-Sec), August 11-13, 2021, 2021.

[33] Y. Shao, J. Ott, Y. J. Jia, Z. Qian, and Z. M. Mao, “The Misuse of An-
droid Unix Domain Sockets and Security Implications,” in Proceedings
of the 23rd ACM SIGSAC Conference on Computer and Communications
Security (CCS), Vienna, Austria, October 24-28, 2016, 2016.

[34] M. L. Vásquez, G. Bavota, C. Bernal-Cárdenas, M. D. Penta, R. Oliveto,
and D. Poshyvanyk, “API Change and Fault Proneness: A Threat to the
Success of Android Apps,” in Proceedings of the 9th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE),
Saint Petersburg, Russian Federation, August 18-26, 2013, 2013.

[35] M. L. Vásquez, G. Bavota, M. D. Penta, R. Oliveto, and D. Poshyvanyk,
“How Do API Changes Trigger Stack Overflow Discussions? A Study on
the Android SDK,” in Proceedings of the 22nd International Conference
on Program Comprehension (ICPC), Hyderabad, India, June 2-3, 2014,
2014.

[36] T. Zhang, G. Upadhyaya, A. Reinhardt, H. Rajan, and M. Kim, “Are
Code Examples on an Online Q&A Forum Reliable? A Study of API
Misuse on Stack Overflow,” in Proceedings of the 40th International
Conference on Software Engineering (ICSE), Gothenburg, Sweden, May
27 - June 03, 2018, 2018.

[37] R. Zhou, M. Hamdaqa, H. Cai, and A. Hamou-Lhadj, “MobiLogLeak: A
Preliminary Study on Data Leakage Caused by Poor Logging Practices,”
in Proceedings of the 27th IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER), London, ON, Canada,
February 18-21, 2020, 2020.

10

https://www.simplilearn.com/tutorials/software-career-resources/android-developer-salary
https://www.simplilearn.com/tutorials/software-career-resources/android-developer-salary
https://stackoverflow.com/questions/33079734/android-get-serial-number
https://stackoverflow.com/questions/33079734/android-get-serial-number
https://developer.android.com/guide/topics/manifest/permission-element
https://developer.android.com/topic/security/risks/android-exported
https://developer.android.com/topic/security/risks/android-exported
https://developer.android.com/topic/security/best-practices
https://developer.android.com/topic/security/best-practices
https://source.android.com/security/app-sandbox
https://source.android.com/security/app-sandbox
https://developer.android.com/topic/security/best-practices#apply-signature-based-permissions
https://developer.android.com/topic/security/best-practices#apply-signature-based-permissions
https://developer.android.com/training/articles/user-data-ids#best-practices-android-identifiers
https://developer.android.com/training/articles/user-data-ids#best-practices-android-identifiers
https://developer.android.com/training/articles/user-data-ids#best-practices-android-identifiers
https://developer.android.com/topic/security/risks/zip-path-traversal
https://stackoverflow.com/questions/11794749/how-to-decode-android-os-build-serial
https://stackoverflow.com/questions/11794749/how-to-decode-android-os-build-serial
https://cwe.mitre.org/data/definitions/926.html
https://buildfire.com/app-statistics/
https://atlasvpn.com/blog/over-60-of-android-apps-have-security-vulnerabilities
https://atlasvpn.com/blog/over-60-of-android-apps-have-security-vulnerabilities
https://developer.android.com/topic/security/risks/path-traversal
https://developer.android.com/topic/security/risks/path-traversal
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/docs/quality-guidelines/core-app-quality#SC-10
https://developer.android.com/docs/quality-guidelines/core-app-quality#SC-10
https://stackoverflow.com/questions/2446248/how-to-remove-all-debug-logging-calls-before-building-the-release-version-of-an
https://stackoverflow.com/questions/2446248/how-to-remove-all-debug-logging-calls-before-building-the-release-version-of-an
https://stackoverflow.com/questions/2446248/how-to-remove-all-debug-logging-calls-before-building-the-release-version-of-an
https://developer.android.com/training/articles/security-tips#RequestingPermissions
https://developer.android.com/training/articles/security-tips#RequestingPermissions
https://developer.android.com/guide/app-compatibility/restrictions-non-sdk-interfaces
https://developer.android.com/guide/app-compatibility/restrictions-non-sdk-interfaces
https://stackoverflow.com/questions/12170386/create-and-share-a-file-from-internal-storage
https://stackoverflow.com/questions/12170386/create-and-share-a-file-from-internal-storage
https://developer.android.com/topic/security/best-practices#external-storage
https://developer.android.com/topic/security/best-practices#external-storage
https://developer.android.com/topic/security/best-practices#internal-storage
https://developer.android.com/topic/security/best-practices#internal-storage
https://developer.android.com/docs/quality-guidelines/core-app-quality#sc
https://developer.android.com/docs/quality-guidelines/core-app-quality#sc
https://developer.android.com/topic/security/best-practices#sharedpreferences
https://developer.android.com/topic/security/best-practices#sharedpreferences
https://stackoverflow.com/questions/3382996/how-to-unzip-files-programmatically-in-android
https://stackoverflow.com/questions/3382996/how-to-unzip-files-programmatically-in-android

